Coronal Mass Ejections (CMEs) are massive releases of plasma from the solar corona. When the charged material is ejected towards the Earth, it can cause geomagnetic storms and severely damage electronic equipment and power grids. Early detection of CMEs is therefore crucial for damage containment. In this paper, we study detection of CMEs from sequential images of the solar corona acquired by a satellite. A low-complexity deep neural network is trained to process the raw images, ideally directly on the satellite, in order to provide early alerts.
Detection of Solar Coronal Mass Ejections from Raw Images with Deep Convolutional Neural Networks / Valsesia, D.; Grippi, A.; Magli, E.; Susino, R.; Telloni, D.; Nicolini, G.; Casti, M.; Mulone, A. F.; Messineo, R.. - (2020), pp. 2272-2275. (Intervento presentato al convegno 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 tenutosi a usa nel 2020) [10.1109/IGARSS39084.2020.9323169].
Detection of Solar Coronal Mass Ejections from Raw Images with Deep Convolutional Neural Networks
Valsesia D.;Magli E.;
2020
Abstract
Coronal Mass Ejections (CMEs) are massive releases of plasma from the solar corona. When the charged material is ejected towards the Earth, it can cause geomagnetic storms and severely damage electronic equipment and power grids. Early detection of CMEs is therefore crucial for damage containment. In this paper, we study detection of CMEs from sequential images of the solar corona acquired by a satellite. A low-complexity deep neural network is trained to process the raw images, ideally directly on the satellite, in order to provide early alerts.File | Dimensione | Formato | |
---|---|---|---|
solar_igarss_author.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
552.21 kB
Formato
Adobe PDF
|
552.21 kB | Adobe PDF | Visualizza/Apri |
09323169.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
600.11 kB
Formato
Adobe PDF
|
600.11 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2880003