Point clouds are an increasingly relevant geometric data type but they are often corrupted by noise and affected by the presence of outliers. We propose a deep learning method that can simultaneously denoise a point cloud and remove outliers in a single model. The core of the proposed method is a graph-convolutional neural network able to efficiently deal with the irregular domain and the permutation invariance problem typical of point clouds. The network is fully-convolutional and can build complex hierarchies of features by dynamically constructing neighborhood graphs from similarity among the high-dimensional feature representations of the points. The proposed approach outperforms state-of-the-art denoising methods showing robust performance in the challenging setup of high noise levels and in presence of structured noise.

Learning Robust Graph-Convolutional Representations for Point Cloud Denoising / Pistilli, F.; Fracastoro, G.; Valsesia, D.; Magli, E.. - In: IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING. - ISSN 1932-4553. - 15:2(2021), pp. 402-414. [10.1109/JSTSP.2020.3047471]

Learning Robust Graph-Convolutional Representations for Point Cloud Denoising

Pistilli F.;Fracastoro G.;Valsesia D.;Magli E.
2021

Abstract

Point clouds are an increasingly relevant geometric data type but they are often corrupted by noise and affected by the presence of outliers. We propose a deep learning method that can simultaneously denoise a point cloud and remove outliers in a single model. The core of the proposed method is a graph-convolutional neural network able to efficiently deal with the irregular domain and the permutation invariance problem typical of point clouds. The network is fully-convolutional and can build complex hierarchies of features by dynamically constructing neighborhood graphs from similarity among the high-dimensional feature representations of the points. The proposed approach outperforms state-of-the-art denoising methods showing robust performance in the challenging setup of high noise levels and in presence of structured noise.
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 6.5 MB
Formato Adobe PDF
6.5 MB Adobe PDF Visualizza/Apri
09309029.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.81 MB
Formato Adobe PDF
3.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2879980