
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Learning Robust Graph-Convolutional Representations for Point Cloud Denoising / Pistilli, F.; Fracastoro, G.; Valsesia,
D.; Magli, E.. - In: IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING. - ISSN 1932-4553. - 15:2(2021),
pp. 402-414. [10.1109/JSTSP.2020.3047471]

Original

Learning Robust Graph-Convolutional Representations for Point Cloud Denoising

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/JSTSP.2020.3047471

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2879980 since: 2021-03-31T11:47:31Z

Institute of Electrical and Electronics Engineers Inc.

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 1

Learning Robust Graph-Convolutional
Representations for Point Cloud Denoising

Francesca Pistilli, Student Member, IEEE, Giulia Fracastoro, Member, IEEE, Diego Valsesia, Member, IEEE,
Enrico Magli, Fellow, IEEE

Abstract—Point clouds are an increasingly relevant geometric
data type but they are often corrupted by noise and affected by
the presence of outliers. We propose a deep learning method that
can simultaneously denoise a point cloud and remove outliers
in a single model. The core of the proposed method is a
graph-convolutional neural network able to efficiently deal with
the irregular domain and the permutation invariance problem
typical of point clouds. The network is fully-convolutional and
can build complex hierarchies of features by dynamically con-
structing neighborhood graphs from similarity among the high-
dimensional feature representations of the points. The proposed
approach outperforms state-of-the-art denoising methods show-
ing robust performance in the challenging setup of high noise
levels and in presence of structured noise.

Index Terms—Point cloud, denoising, outlier removal, graph
neural networks.

I. INTRODUCTION

Point clouds are an unordered collection of 3D points
sampled from 2D surfaces of objects or scenes. They are
usually acquired by devices, such as LIDARs, or are the
output of reconstruction algorithms. Point clouds are becoming
increasingly popular due to their ability to provide a detailed
representation of the real world and the interest in exploring
geometric representation in challenging applications, such as
autonomous driving. However, the use of such type of data
is limited by the fact that the acquisition methods typically
perturb the data with a non-negligible amount of noise and
outliers. Therefore, the development of efficient restoration
methods is crucial to improve the performance of various
downstream tasks such as shape matching, surface reconstruc-
tion, object segmentation and more.

Several approaches to point clouds denoising and outlier
removal can be found in literature. Traditional model-based
methods typically address the denoising task by fitting a
surface to the noisy data or exploiting some geometric features
extracted from the noisy observations and detect outliers using
statistical methods. These techniques are efficient at low levels
of noise, otherwise they usually suffer from oversmoothing.
Recently, there has been great interest around learning-based
methods, in particular deep neural networks. The main chal-
lenges of point cloud processing with neural networks are the
irregular domain, i.e., point clouds can not be represented in
a grid-like structure, and the permutation-invariance problem,
i.e., the fact that any permutation of the order in which points

The authors are with Politecnico di Torino - Department of Electronics
and Telecommunications, Italy. Email:name.surname@polito.it. This material
is based upon work supported by Google Cloud.

are stored still represents the same point cloud. These two
characteristics make extending traditional techniques based
on convolutional neural networks (CNNs) to point clouds
difficult. Some algorithms tackled these challenges by ei-
ther approximating the irregular domain with a grid, e.g.
by building voxels, or by building a permutation-invariant
model as a composition of operations acting on single points
(e.g., size-1 convolution) and a globally symmetric function
(e.g., a max pool) as done by PointNet [1]. Nevertheless,
the former introduces an undesirable approximation, while the
latter lacks the expressiveness of CNN where the convolution
operation extracts features that are localized as functions of
the neighborhood of a pixel and features are assembled in a
hierarchical manner by means of multiple layers, progressively
expanding the receptive field.

Graph convolution [2] has recently emerged as a valid
and elegant method to build operators over irregular domains
represented as graphs and it is able to deal with permutation-
invariant data. Furthermore, this type of network is able to
replicate some of the most desirable characteristic of convolu-
tional neural networks (CNN), such as localization and com-
positionality of the features as well as efficient weight reuse.
Spatial-domain definitions of graph convolution have been
recently applied to several problems involving point clouds
such as classification [3], segmentation [4], shape completion
[5] and generation [6]. However, point clouds denoising and
outlier removal have not yet been addressed and present unique
challenges such as studying graph convolutional layers that
are stable in presence of noise and constructing local feature
hierarchies rather than global features as typically required by
classification or segmentation problems.

In this paper, we propose a deep graph-convolutional neural
network to denoise the point cloud geometry. The proposed
network simultaneously removes outliers and denoises the
remaining points, learning effective feature representation for
both tasks without prior knowledge of the noise variance.
The proposed architecture has an elegant fully-convolutional
behavior that, by design, can build hierarchies of local or
non-local features to effectively regularize the denoising prob-
lem. This is in contrast with other methods in the literature
that typically work on fixed-size patches or apply global
operations [7], [8]. Moreover, dynamic computation of the
graph from similarities among the high-dimensional feature-
space representations of the points allows to uncover more
complex latent correlations than defining neighborhoods in
the noisy 3D space, and possibly exploit non-local self-
similarity. Extensive experimental results show a significant

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2

improvement over state-of-the-art methods, especially in the
challenging conditions of high noise levels. The proposed
approach is also robust to structured noise distributions such
as the ones encountered in real LiDAR acquisitions. Our main
contributions with respect to existing literature can therefore
be summarized as: i) an improved architecture for the point
cloud restoration problem that can handle outlier detection
and removal and denoising in a single model; ii) a highly
general graph convolutional layer that is stable in presence of
noise and with a dynamic update of the graph; iii) state-of-the-
art denoising performance. This work is an extension of our
conference work [9]. It significantly expands the conference
material by considering the problem of simultaneous denoising
and outlier detection and removal instead of simple denoising
of white Gaussian noise. We include a novel neural network
architecture that efficiently creates a shared feature space both
for the outlier detection and denoising tasks, an augmented
loss function based on weighted cross entropy to enable the
detection of sparse outliers, and a blind denoising method
that does not require variance-specific training and expanded
experimental results.

The paper is organized as follows. Sec. II-A presents some
background material on graph convolutional neural networks
and discusses how the proposed approach differs from other
works in the literature. Sec. III presents our proposed method.
Sec. IV and Sec. V present extensive experimental validation
and analysis of the properties of the proposed method. Finally,
Sec. VI draws some conclusions.

II. BACKGROUND AND RELATED WORK

A. Graph-convolutional neural networks

In the last years, data-driven solutions based on neural
networks have shown impressive performance on a variety of
problems, including low-level tasks such as image restoration
[10], [11]. The workhorse of these methods is the convolu-
tional neural network (CNN), which has been shown to capture
highly complex features in images. Despite their success, a
major shortcoming of CNNs is that they are unable to process
data defined on irregular domains. In particular, one case that
is drawing attention is when the data structure can be described
by a graph and data are defined as vectors on the graph nodes.
We can find such kind of data in many applications, e.g. 3D
point clouds [4], [3], computational biology [12], [13], and
social networks [14]. However, extending CNNs from data
with a regular structure, such as images and video, to graph-
structured data is not straightforward.

In order to design effective graph neural networks, one of
the major challenges is defining a convolution operator for
graph-structured data that has all the desirable properties of
the classical convolution. In fact, convolution is one of the
main building blocks of the standard CNNs. Its properties of
stationarity, locality and compositionality are a good match for
many types of data and can allow effective weight reuse. For
these reasons, defining a convolutional operation for graph-
structured data with similar characteristics is of paramount
importance and it has been extensively studied in recent years,
even if a universally accepted solution is still missing at

the moment. In the literature on this topic, we can identify
two different classes of approaches. The first one is the
spectral approaches [15], [16], [14], where the convolution
operator is defined in the frequency domain through the graph
Fourier transform. Polynomial approximations [16] have been
proposed in order to reduce the computational cost of this
operation. One of the most well-known graph neural network
architectures, the Graph Convolutional Network (GCN) [14],
uses a degree-1 polynomial approximation for semi-supervised
problems. However, a fundamental limitation of the spectral
approaches is that the learned filters cannot be generalized
to different graph structures. The second class of approaches
overcomes this drawback by defining the convolution operator
in the spatial domain. In this case, the convolution is defined
as a weighted local aggregation combining the signal values
of the neighboring nodes. Since such operation is defined at a
neighborhood level, it can be effectively applied to data with
different graph structures. Several definitions of local aggrega-
tions have been proposed [17], [18], [19], [3], [20], [21], [4],
[22], [23]. Many of them employ scalar weights [17], [20],
[18] or weight matrices that do not depend on the input data
[4], [19], [21], [23]. On the other hand, the Edge-Conditioned
Convolution (ECC) in [3] proposes to weigh the contributions
of the neighbors using edge-dependant matrices. With respect
to the other approaches, the use of edge-dependent matrices
allows to define a more general convolution operator with an
increased representational power. This motivates our choice
of employing the ECC in this paper. On top of this, we
also use the approximations proposed in [24] in order to
address vanishing gradient and over-parameterization issues
that typically affect this definition of graph convolution.

B. Point cloud denoising

3D point cloud denoising has received great attention and
the approaches to solve it can be broadly categorized into:
local surface fitting methods [25], [26], [27], [28], [29], [30],
sparsity-based methods [31], [32], [33], graph-based methods
[34], [35], [36], and learning-based methods [7], [37], [8],
[38], [39]. Among the methods belonging to the first category,
the moving least squares (MLS) approach [25] is one of the
most popular and its extensions [26], [27] provide a degree
of robustness in presence of outliers. Other surface fitting
methods have also been proposed for point cloud denoising,
such as jet fitting [30] or parameterization-free local projector
operator (LOP) [28], [29]. These methods achieve remarkable
performance at low levels of noise, but they suffer from over-
smoothing when the noise level is high [40] or if outliers are
not robustly removed.

A second class of point cloud denoising methods [31],
[32], [33] is based on sparse representations. In this case, the
denoising procedure solves two minimization problems with
sparsity constraints, where the first one estimates the surface
normals and then the second one uses them in order to update
the point positions. However, at high levels of noise the normal
estimation can be very poor, leading to over-smoothing or
over-sharpening [32]. The MRPCA model [33] accounts for
the presence of sparse outliers but it can be hard to correctly

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 3

tune the desired sparsity in the optimization problem and its
convergence is not very robust in presence of high noise and
strong outliers.

Another approach for point cloud denoising is derived from
the theory of graph signal processing [41]. These methods
[34], [35], [36] first define a graph whose nodes are the
points of the point cloud. Then, graph total variation (GTV)-
based regularization methods are applied for denoising. These
techniques have proved to achieve very strong performance
when the noise level is low. Instead, at high noise levels, the
graph construction can become unstable, negatively affecting
the denoising performance.

In the last years, learning-based methods [7], [37], [8],
[38], especially the ones based on deep learning, have been
gaining attention. Extending convolutional neural networks to
point cloud data is not straightforward, due to the irregular
positioning of the points in the space. In the context of
shape classification and segmentation, many methods have
recently been proposed specifically to handle point cloud data.
PointNet [1] is one of the most relevant works in this field,
where each point is processed independently before applying
a global aggregation. Recently, a few methods proposed to
extend the approach of PointNet to point cloud denoising.
PointCleanNet [7] uses an approach similar to PointNet in
order to estimate correction vectors for the points in the noisy
point cloud. In contrast, the authors in [8] use a neural network
similar to PointNet to estimate a reference plane for each
noisy point and then they obtain the denoised point cloud by
projecting the noisy point onto the corresponding reference
plane. Also PointProNet [38] performs point cloud denoising
by employing an architecture similar to PointNet in order to
estimate the local directions of the surface. However, the main
drawback of these techniques based on PointNet is that they
work on individual points and then apply a global symmetric
aggregation function, but they do not exploit the local structure
of the neighborhood. PointCleanNet addresses this issue by
taking as input local patches instead of the entire point cloud.
However, this solution is still limited by the fact that the
network cannot learn hierarchical feature representations, like
standard CNNs. Moreover, PointCleanNet does not handle
denoising with outliers in a single model, but has two models,
one specialized on outlier detection and one on denoising, thus
limiting its efficiency.

Graph-convolutional networks have shown promising per-
formance on tasks such as segmentation and classification. In
particular, DGCNN [4] first introduced the idea of a dynamic
graph update in the hidden layers of a graph-convolutional
network in the context of classification and segmentation
tasks addressed in [4]. However, the denoising problem is
significantly different since it relies more on localized rep-
resentations rather than global features. In particular, there
are several design choices that make DGCNN unsuitable for
point cloud denoising: the spatial transformer block is not
useful for denoising since it seeks a canonical global repre-
sentation, whereas denoising is mostly concerned with local
representations of point neighborhoods; it also significantly
increases the computational complexity for large point clouds;
the DGCNN graph convolution operation uses a max operator

in the aggregation, which is unstable in presence of noise; the
specific graph convolution definition is also less general than
the one presented in this paper, which allows to implement
adaptive filters where the aggregation weights are dependent
on the feature vectors instead of being fixed as in [4], as well
as incorporating an edge attention term which is especially
important in presence of noise because it promotes a lowpass
behavior by penalizing edges with large feature variations.

III. PROPOSED METHOD

This section presents the proposed Graph-convolutional
Point Outlier removal and Denoising (GPOD) network. The
goal of our work is to build a single model that can robustly
denoise point clouds affected by outliers as well as geometry
noise. We first present a brief system overview and then focus
on the main building blocks.

A. Architecture overview

An overview of the system architecture is presented in Fig.
1. The proposed method combines the outlier removal and
denoising tasks in a single model so that a common feature
space can be efficiently learned. At a high level, the architec-
ture shows three main building blocks: i) feature extraction;
ii) outlier detection and removal; iii) residual denoising.

The feature extraction stage acts as a pre-processor that
creates a feature space capturing localized representations
of neighborhoods in the point cloud. This feature space is
shared between the outlier removal and denoising tasks and its
representations are robust to input noise. The feature extraction
stage is composed of three convolutional layers with single-
point convolutions and a residual block with three graph-
convolutional layers.

Outlier detection is performed by using the representations
learned by the feature extractor and feeding them to a point-
wise binary classifier, implemented as a single-point convo-
lution. Outlier removal is then performed by subsampling the
point cloud, removing all those points classified as outliers
according to a design decision threshold on the classifier
probabilities.

The subsampled point cloud is then processed by the rest
of the network, which completes the denoising task by means
of two residual blocks with graph-convolutional layers.

We remark that, contrary to other methods in the literature
(e.g., PointCleanNet [7]), we propose a single model that
performs outlier removal and denoising at the same time.
This is advantageous as it increases efficiency by sharing
a common parameterization for both tasks. Moreover, early
outlier removal is advantageous with respect to returning both
outlier probabilities and denoised points as final outputs of
the model since the presence of outliers can negatively affect
the feature space learned by the network and reduce the
performance. In fact, outlier points should be disregarded as
they do not convey any information about the signal, and,
if not removed, they could be involved in graph-convolution
operations and perturb the displacement estimation, especially
at high levels of noise.

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 4

x+n+o

1x1 CONV GCONV GRAPH RELU BNORMLegend:

x̂

FEATURE EXTRACTION OUTLIER
REMOVAL

DENOISING

SIGMOID SAMPLING

x+n+o

1x1 CONV GCONV GRAPH RELU BNORMLegend:

x̂

FEATURE EXTRACTION OUTLIER
REMOVAL

DENOISING

SIGMOID SAMPLING

Fig. 1. Proposed Graph-convolutional Point Outlier removal and Denoising (GPOD) architecture.

B. Graph-convolutional layer

The graph-convolutional layer is the core of the pro-
posed architecture. As described in Section II-A, we use the
Lightweight ECC [24], which is a modified version of the
ECC presented in [3].

The graph-convolutional layer has two inputs: a matrix
Hl+1 ∈ RF l×N representing a feature vector for each of the
N points, and a graph describing the connections between
points. The output feature vectors Hl+1 ∈ RF l+1×N at layer
l are computed by performing a weighted local aggregation:

Hl+1
i = WlHl

i +
∑
j∈N l

i

γl,j→i
∑r
t=1 ω

j→i
t φj→it ψj→i

T

t Hl
j

|N l
i |

,

where Hl
i is the input feature vector at node i and N l

i is the set
of its neighbors. The weights include a self-loop matrix Wl ∈
RF l+1×F l

which is shared among all points. The other weights
employed in the aggregation, i.e., vectors φj→it ∈ RF l+1

,
ψj→it ∈ RF l

and ωj→it ∈ R, are computed as functions of
the difference between the input feature vectors of point i and
point j, i.e., φj→it ,ψj→it , ωj→it = F

(
hli − hlj

)
. This function

is implemented as a multilayer perceptron with two layers,
where the final fully-connected layer can be approximated by
means of a stack of circulant matrices since the number of free
parameters would otherwise be very large. The aggregation
weight matrix is approximated as

∑r
t=1 ω

j→i
t φj→it ψj→i

T

t ,
where r is a hyperparameter setting the maximum rank; this is
done to reduce the number of parameters and memory require-
ments of the aggregation operation. We refer the reader to [24]
for additional details on these approximations. The parameter
γl,j→i ∈ R is an edge attention term which exponentially
depends on the Euclidean distance between feature vectors of
neighboring nodes:

γl,j→i = exp
(
−‖Hl

i −Hl
j‖22/δ

)
,

being δ a decay hyperparameter. This is particularly useful
in stabilizing the operation in presence of noise or imperfect
outlier removal.

The graph is dynamically constructed by searching for
the k-nearest neighbors of each point in terms of Euclidean
distance between their feature vectors. In order to reduce
the computational cost, a search area of predefined size,
centered around the point, is defined, e.g., as a fixed number
of neighbors in the noisy 3D space, among which k nearest
neighbors are selected for each point (see Fig. 7 for a visual

representation of the search area and feature space neighbor-
hoods). This allows to avoid computing pairwise distances
between all points in the point cloud at every layer where the
graph is recomputed, and only compute distances between the
features of a point and those of the points in its search area.
The graph is computed at the input of each residual block and
then it is shared among the graph-convolutional layers inside
the block, again to limit complexity.

As described in Sec. II-A, the definition of graph con-
volution employed in this paper presents some advantages
over alternative definitions such as GraphSAGE [19], FeastNet
[20] or DGCNN [4]. In particular, the aggregation weights
depend on the input data making the filtering layer adaptive.
Moreover, since the function is implemented as an multilayer
perceptron, it can be more general than a fixed function with
some learnable parameters.

Finally, we remark that the proposed architecture is fully-
convolutional thanks to the graph convolution operation. By
fully-convolutional we mean that the output feature vector of
each point at a given layer is obtained as an aggregation of
the feature vectors of neighboring points in the previous layer,
thus building complex hierarchies of aggregations. This is in
contrast with PointCleanNet [7] which works by processing
each patch independently to estimate the denoised version
of the central point. That approach is not able to create
hierarchies of features obtained by successive multi-point
aggregations, as in a classical CNN. Thanks to the graph-
convolutional structure, we can replicate this behavior in the
graph-based approach, thereby learning more powerful feature
spaces.

C. Outlier detection

The part of the network able to detect outliers is composed
of two building blocks: the feature extraction and the outlier
removal block, as reported in Fig. 1.

The feature extraction is performed by three single-point
convolutions that gradually project the input from the 3D
space to an F -dimensional feature space, and a residual
block. In general, a residual block is a building-block of the
proposed network characterized by three graph-convolutional
layers followed by batch normalization to stabilize training
and an input-output skip connection to reduce vanishing
gradient issues. Notice that the graph is shared among the
graph convolutional layers inside the residual block to limit
computational complexity. This block is able to learn a feature

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 5

representation suitable for the addressed tasks. The features are
then processed by a binary classifier, which is implemented
as a single-point convolution that returns the probability of
being an outlier associated to each point. All the points that
are considered as outlier according to a specific detection
threshold are removed from the feature representation of the
original point cloud and the feature vectors of the remaining
points are the input to the denoising block.

The loss function considered for the outlier detection task
is the weighted cross entropy (WCE):

LWCE = −
∑
i

[β · pi log(p̂i) + (1− pi) log(1− p̂i)] , (1)

where β is a positive weight, pi is the true label of the i-th
point and p̂i is the predicted probability of being an outlier.
The weighted cross entropy is usually exploited for unbalanced
classification, as in our scenario where the number of outliers
is typically far less compared to the total number of points
in the point cloud. The parameter β is a weight able to
penalize or increment the cost of positive error with respect
to negative errors. If β > 1, the number of false negatives
decreases increasing the recall, otherwise the number of false
positive decreases increasing the precision. In our network the
parameter β is set to a value larger than one in order to increase
the chance of capturing the outliers, avoiding false negatives
that would highly penalize the overall denoising performance.

D. Denoising with outlier removal

The denoising block reported in Fig. 1 takes as input the
feature representations of all the points except those classified
as outliers, and returns as output the final denoised point cloud
in 3D space without outliers.

At a high level, the block architecture is a residual network
that estimates the additive noise component of the input instead
of the denoised point cloud, because it has been shown [10]
that predicting the residual is easier than directly cleaning
the data. A cascade of two residual blocks is responsible for
the noise estimation in the feature space; the noise is later
projected to the 3D space by a single graph-convolutional
layer. Finally the estimated noise is removed from the noisy
point cloud. At the beginning of each residual block the graph
is computed by selecting the k nearest neighbors to each
point in terms of Euclidean distances in the feature space.
The dynamic graph construction, consisting in updating the
graph after each residual block, has been shown to induce more
powerful feature representations [4], [6] and in the context of a
residual denoising network it progressively uncovers the latent
correlations that have not been eliminated yet.

The denoising loss function is a combination of the mean
squared error (MSE) and a regularization term that takes into
account the surface proximity (SP), computed as the distance
between each denoised point and the closest ground truth:

LMSE−SP =
1

N

N∑
i=1

[
‖x̂

′

i − xi‖22 + λmin
j
‖x̂

′

i − xj‖22
]
, (2)

where N is the number of points in the original point cloud,
x̂

′
is the denoised point cloud without the outliers, x is the

original point cloud without additive noise and outliers, and
λ is a regularization hyperparameter. The possible remaining
outliers, which are not detected by the outlier classifier, are not
considered in the loss function since its purpose is to constrain
the denoising performance in presence of additive Gaussian
noise. Notice that the MSE cost alone does not account on
the fact that the points may lie on a surface and therefore the
tangential component of the noise is not as relevant as the
normal component. This property is incorporated by means
of the SP regularizer, which approximates the distance of the
denoised point from the ground truth surface by computing the
distance between the denoised point and the closest ground
truth point. Other works also considered proximity to surface
in the loss function. Notably, PointCleanNet [7] uses a loss
that combines the proximity to surface with a dual term
measuring the distance between a ground truth point and
the closest denoised point. This is done to ensure that the
denoised points do not collapse into filament structures. We
found that using the MSE to enforce this property provides
better results. Indeed, combining this dual term and surface
proximity one obtains the popular Chamfer measure (C2C),
but to the degerate behavior promoted by the dual term, using
C2C as loss function has, in general, worse performance than
the proposed loss.

E. Training procedure

The final loss for denoising with outlier removal combines
the losses for the two tasks as:

LOR−DN = LMSE−SP + αLWCE, (3)

where α is a regularization parameter.
The training procedure follows three steps: i) optimize

only the parameters of the feature extraction and the outlier
removal block using Eq. (1) as loss; ii) then optimize only the
parameters of the denoising block using Eq. (2) as loss; iii)
finally, finetune all the parameters of the proposed network
using Eq. (3) as loss.

This training process allows each module to correctly spe-
cialize for its own tasks, limiting the overall computational
complexity, while at the same time providing the benefits of
end-to-end optimization in the final finetuning step.

IV. EXPERIMENTAL RESULTS

A. Experimental setting

The training, validation and test sets are collections of post-
processed point clouds from the Shapenet [43] repository. This
database is composed of 3D models of 55 object categories,
each described as a collection of meshes. We first sample
30720 uniformly distributed points for each selected model,
then we scale the obtained point clouds normalizing their
diameter in order to ensure that data are at the same scale.
The training set is a collection of more than 100000 patches
of 1024 points, randomly selected from point clouds from all
the categories of the repository except those reserved for the
test set and the outlier validation set. Each patch is created by
selecting a point from a point cloud and collecting its 1023

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 6

0 0.2 0.4 0.6 0.8 1

Fpr

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

STM
DGCNN
GPOD
PCN

0 0.2 0.4 0.6 0.8 1

Fpr

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

STM
DGCNN
GPOD
PCN

0 0.2 0.4 0.6 0.8 1

Fpr

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

STM
DGCNN
GPOD
PCN

Fig. 2. ROC curves. Left σ = 0.02, center σ = 0.015, right σ = 0.01.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

STM
DGCNN
GPOD
PCN

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

STM
DGCNN
GPOD
PCN

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

STM
DGCNN
GPOD
PCN

Fig. 3. Precision-Recall curves. Left σ = 0.02, center σ = 0.015, right σ = 0.01.

TABLE I
OUTLIER DETECTION PERFORMANCE (%).

F1 Recall Precision
σ STM DGCNN PCN GPOD STM DGCNN PCN GPOD STM DGCNN PCN GPOD

[42] [4] [7] [42] [4] [7] [42] [4] [7]
0.02 89.58 ± 3.07 89.69 ± 3.57 81.01 ± 1.36 89.43 ± 3.29 84.61 ± 4.76 85.36 ± 4.33 88.27 ± 4.75 83.88 ± 4.48 94.55 ± 1.45 94.54 ± 2.97 75.06 ± 2.17 95.87 ± 2.31

0.015 92.21 ± 2.51 92.12 ± 2.80 85.67 ± 1.65 91.41 ± 2.68 86.67 ± 4.27 87.09 ± 4.08 90.05 ± 4.20 85.29 ± 4.23 97.73 ± 0.82 97.83 ± 1.60 81.85 ± 2.15 98.59 ± 0.99
0.01 94.10 ± 2.07 93.81 ± 2.26 90.99 ± 2.08 92.50 ± 2.34 88.54 ± 3.98 88.76 ± 3.85 91.53 ± 3.77 86.30 ± 4.02 99.66 ± 0.18 99.56 ± 0.36 90.57 ± 2.12 99.76 ± 0.22

closest points. The test set consists of 100 point clouds taken
from ten different categories: airplane, bench, car, chair, lamp,
pillow, rifle, sofa, speaker, and table. Two test sets are created
from the clean collection of point clouds, one corrupted only
by Gaussian noise and the other one with additional outliers.
The validation set is a collection of 10 point clouds, belonging
to five different categories: bath, clock, laptop, tower and train.
The validation set is employed after the first stage of the
training to set the threshold for outlier detection. The threshold
is identified as the value that allows to achieve the maximum
F1 score over the validation set and the selected value is
exploited in the following two stages of the training. In our
experiments the threshold is set to 0.03.

The obtained training, validation and test sets are artificially
corrupted to model noisy observations. Additive Gaussian
noise with a range of standard deviations σn ∈ [0.01, 0.02]
is added to the original data to simulate different levels of
noise. The proposed method is blind, therefore data corrupted
by all the standard deviations in the aforementioned range
are considered for the training procedure. For the denoising
with outlier removal task, a mix of outliers and noisy points
are considered. Outliers are modeled as points corrupted by
additive Gaussian noise with a standard deviation 10 times
higher than the one of the higher level of Gaussian noise, i.e.,
σo = 0.2, which is added to 10% of the noiseless data points.

Finally, an outlier is resampled if its realization is closer than
one noise standard deviation to the original position.

The different stages of the recommended training proce-
dure are trained for approximately 50000, 80000 and 100000
iterations, respectively. A batch size of 16 patches is always
used. The number of features used for all the layers is 99,
except for the first three single-point convolutional layers of
the feature extraction block, where the number of features is
gradually increased from 33 to 66 and finally to 99. The Adam
optimizer has been employed with a fixed learning rate equal
to 10−5 for the first two stages and equal to 10−6 for the
last one. Concerning the graph-convolutional implementation,
the rank r for the low-rank approximation is set to 11 and
3 circulant rows are considered for the construction of the
circulant matrix. During testing, the network takes as input
the whole point cloud and a search area is associated to each
point of the point cloud, wherein the neighbors are searched
and identified. Unless otherwise stated, 16 nearest neighbors
are used for graph construction.

B. Outlier detection performance

In this section the outlier detection performance of the
GPOD network is analyzed and compared with other tech-
niques. We consider a statistical method (STM) based on
[42] and two learning-based methods, PointCleanNet [7] and

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 7

DGCNN [4]. PointCleanNet (PCN) is one of the most recent
methods that specifically address both denoising and outlier
removal tasks and its code is publicly available. The method
is divided into two different networks, separately trained and
utilized for the two tasks; in this section we only consider
the performance of the network in charge of the outlier de-
tection. The DGCNN architecture, which originally addresses
segmentation and classification of point clouds, is modified
in order to adapt the segmentation architecture for the outlier
detection task. The purpose of this experiment is to verify
whether the small subnetwork dedicated to outlier removal
is competitive against state-of-the-art models specialized for
outlier removal. Indeed, we do not seek to attain state-of-the-
art performance but to be close to it with a small module that
can be easily integrated in a larger architecture and still retain
that performance after also training the full architecture for the
denoising task, For this reason, we present PointCleanNet and
DGCNN trained to only perform outlier detection, contrary
to GPOD which is trained for both outlier detection and
denoising.

To evaluate the performance the Receiver Operating Charac-
teristic (ROC) and the precision/recall curves obtained over the
test set are analyzed and reported in Fig. 2 and 3. Moreover,
average values of F1-score, recall and precision of the ten
categories of the test set are reported in Table I. We ensure
a fair comparison on the reported values by selecting the
detection threshold as the one that maximizes the F1 score
over the validation set for all the methods. In particular for
PointCleanNet the threshold is equal to 0.8, for DGCNN to
4.4× 10−6 and for STM to 0.61.

The results suggest that all methods roughly exhibit the
same performance, which is an interesting result since GPOD
is not specifically specialized on outlier removal. It also has
to be noted that PCN tends, by design, to have a high recall
at the cost of a lower precision.

TABLE II
CHAMFER MEASURE (×10−6), σ = 0.02. DENOISING PERFORMANCE.

Class Noisy DGCNN TD APSS RIMLS AWLOP MRPCA GLR PCN GPOD
[4] [37] [27] [26] [29] [33] [34] [7]

Airplane 161.79 131.11 73.08 175.68 186.24 145.94 123.71 90.55 74.17 53.65
Bench 161.52 122.55 69.05 166.85 182.42 157.29 127.51 83.99 90.34 48.26

Car 148.74 137.25 92.36 141.69 167.78 145.51 109.49 77.56 160.08 74.50
Chair 163.75 159.69 86.34 160.01 155.38 158.12 122.70 79.85 145.56 66.52
Lamp 204.05 273.24 93.84 178.08 198.22 187.31 146.41 109.24 85.31 63.72
Pillow 215.58 198.95 83.43 164.83 196.53 206.14 150.65 85.86 92.84 64.84
Rifle 144.18 86.67 52.44 195.68 176.07 144.22 105.87 89.19 71.57 35.60
Sofa 184.11 155.88 84.64 166.34 190.91 178.93 133.98 89.31 144.72 78.79

Speaker 186.01 172.84 92.29 138.80 162.34 180.45 126.17 84.37 160.26 74.00
Table 168.32 144.88 71.96 171.25 179.81 162.36 125.72 78.06 102.17 53.47

Average 173.80 158.31 79.95 165.92 179.57 166.63 127.22 86.80 112.70 61.33

C. Denoising performance without outliers

In this section, we analyze the pure denoising performance
of the methods, i.e., when the test point clouds are only
corrupted by additive Gaussian noise without outliers.

Several classes of point cloud denoising methods are avail-
able in literature, as reported in Section II-B and we consider at
least one algorithm from each one. APSS [27] and RIMLS [26]
are well-known MLS-based surface fitting methods and they

TABLE III
CHAMFER MEASURE (×10−6), σ = 0.015. DENOISING PERFORMANCE.

Class Noisy DGCNN TD APSS RIMLS AWLOP MRPCA GLR PCN GPOD
[4] [37] [27] [26] [29] [33] [34] [7]

Airplane 97.78 77.18 41.29 86.42 106.33 73.32 67.39 36.76 35.27 29.14
Bench 94.82 70.17 44.93 75.51 91.93 82.04 70.05 32.19 30.10 27.62

Car 102.23 94.82 66.71 72.56 103.52 93.38 69.88 55.92 92.23 54.53
Chair 105.16 100.93 67.63 81.47 104.38 92.47 73.45 48.62 69.18 47.07
Lamp 120.65 173.83 43.30 65.79 82.40 88.78 77.09 39.93 30.59 28.57
Pillow 132.57 120.43 35.11 22.74 42.54 112.54 73.67 31.38 29.02 27.27
Rifle 80.40 45.26 56.46 92.14 110.51 69.35 55.65 31.81 21.45 23.30
Sofa 121.02 101.30 46.09 42.80 69.92 107.58 72.62 51.12 61.15 43.91

Speaker 123.27 114.86 67.25 46.45 58.28 110.29 77.95 53.75 87.68 51.12
Table 103.50 87.84 54.56 62.64 78.21 89.33 70.87 37.94 43.88 35.30

Average 108.14 98.66 52.33 64.85 84.80 91.91 70.86 41.94 50.05 36.78

TABLE IV
CHAMFER MEASURE (×10−6), σ = 0.01. DENOISING PERFORMANCE.

Class Noisy DGCNN TD APSS RIMLS AWLOP MRPCA GLR PCN GPOD
[4] [37] [27] [26] [29] [33] [34] [7]

Airplane 50.32 39.80 42.13 28.22 39.73 31.27 28.19 19.56 26.36 31.64
Bench 48.71 36.88 40.92 26.97 32.76 34.08 32.93 20.43 27.64 33.03

Car 64.34 60.77 65.78 47.73 55.56 54.21 44.33 42.22 75.34 54.06
Chair 60.78 58.00 77.03 37.31 45.65 47.91 38.41 34.98 55.10 50.75
Lamp 59.73 112.13 44.76 24.57 34.02 35.23 31.51 19.67 20.58 31.79
Pillow 69.79 62.97 24.56 15.64 21.23 46.36 23.95 17.59 21.07 29.21
Rifle 38.97 22.20 90.50 36.01 49.37 27.79 23.49 15.84 15.09 36.38
Sofa 69.63 57.87 41.22 22.27 28.04 53.08 32.14 30.88 43.36 40.99

Speaker 73.50 69.39 68.59 26.50 30.19 58.92 47.57 40.78 76.09 56.03
Table 56.21 47.44 54.98 27.45 32.63 41.26 34.78 27.12 43.02 40.38

Average 59.20 56.74 55.05 29.27 36.92 43.011 33.73 26.91 40.36 40.43

were tested using the MeshLab software [44]. AWLOP [29]
is another surface fitting method and it was tested using the
software released by the authors. MRPCA [33] is a sparsity-
based method and it was tested using the code provided by
the authors. GLR [34] is one of the most promising works
belonging to the graph signal processing category and it was
tested using the code provided by the authors. PointCleanNet
(PCN) [7] is considered as the state-of-the-art learning-based
method. We also consider Total Denoising (TD) [37] as a
more recent learning-based method. Furthermore, a modified
version of the popular DGCNN [4] is taken into account as an
additional baseline. This modified version replaces the output
1×1 convolutional layer to regress the point displacement and
disregards the category embedding as all methods are blind to
class labels.

In order to compare the denoising performance, the Chamfer
measure, also called Cloud-to-Cloud (C2C) distance is com-
puted. This metric is widely utilized in point cloud denoising,
because it computes an average distance of the denoised points
from the original surface. First, the mean distance between
each denoised point and its closest ground truth point is
computed, then the one between each ground truth point and
its closest denoised point. The Chamfer measure is taken as
their average:

C2C=
1

2

[
1

N1

N1∑
j=1

min
i
‖x̂i − xj‖22+

1

N2

N2∑
i=1

min
j
‖x̂i − xj‖22

]
,

(4)

where N1 and N2 are respectively the number of points in
the original and in the denoised point cloud, x̂ the denoised
points and x the original points. We compute the average C2C

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 8

TABLE V
MEAN CHAMFER MEASURE (×10−6), σ = 0.01. VARIANCE-SPECIFIC

TRAINED NETWORK. DENOISING PERFORMANCE.
Class Noisy DGCNN TD APSS RIMLS AWLOP MRPCA GLR PCN GPOD

[4] [37] [27] [26] [29] [33] [34] [7]
Average 59.20 53.14 55.05 29.27 36.92 43.011 33.73 26.91 40.36 24.68

over all the models of each category in the test set and the
results of the experiments at different noise levels are reported
in Table II, III and IV. It can be observed that the GPOD
network significantly outperforms state-of-the-art methods at
medium and high levels of noise, as shown in Table II with
σ = 0.02 and Table III with σ = 0.015. Instead, traditional
model-based methods become very competitive for the easier
task at low noise variance (σ = 0.01). This behaviour can be
explained by the fact that most of the other methods involves
surface reconstruction or normal estimation, operations that
are computed with reduced accuracy at high levels of noise.
Instead, GPOD and other learning-based methods can leverage
more complex features which are more robust at high noise
levels. It has to be recalled that the proposed method is trained
blind, without using any information about the amount of noise
that is inserted in the point clouds. Therefore, it is reasonable
to accept high performance at higher level of noise, which is
the most critical scenario, and average results at lower level
of noise. Furthermore, if more information about the noise
variance is available, it is possible to significantly increase
performance, especially at low level of noise, by training a
non-blind model, as shown in Table V. In this case our network
and the other learning-based methods, DGCNN and PCN, are
trained with point clouds corrupted by additive Gaussian noise
at a specific standard deviation (σ = 0.01) and it is clearly
visible that the proposed method outperforms the others.

Fig. 4 shows qualitative results at a medium noise level
by presenting the denoised point cloud for each method. The
surface distance of each point is visualized in the figure to
understand the position of the denoised points with respect to
the ground truth. The root mean square value of the surface
distance (RMSD) can be computed as:

RMSD =

√√√√ 1

N

N∑
i=1

min
j
‖x̂i − xj‖22. (5)

We can observe that on average GPOD provides a lower point-
surface distance and the shape of the reconstructed point cloud
is more similar to the original one compared to the other
methods.

D. Denoising performance with outlier removal

Finally, the denoising performance in presence of Gaus-
sian noise and outliers is analyzed. The methods taken into
account for comparison are denoising methods that include
outlier removal. For the learning-based methods, we consider
PointCleanNet [7] and DGCNN [4]. For both PointCleanNet
and DGCNN the experiments are performed using two models:
first given the noisy observations the outlier detection network
is applied to identify and remove the outliers, then the re-
maining points are fed into the denoising network, obtaining

TABLE VI
CHAMFER MEASURE (×10−6), σ = 0.02. DENOISING WITH OUTLIER

REMOVAL PERFORMANCE.
Class Noisy STM + GLR DGCNN PCN GPOD

[42] [34] [4] [7]
Airplane 2888.50 95.99 132.06 55.52 59.80
Bench 2947.12 89.6 122.16 55.53 50.73

Car 2508.31 83.35 137.46 133.41 81.53
Chair 2381.04 92.90 162.18 108.63 75.07
Lamp 2958.91 120.40 194.73 59.56 66.29
Pillow 2816.90 91.48 198.14 56.05 74.42
Rifle 3958.87 102.18 81.72 49.73 38.92
Sofa 2527.52 97.00 162.54 122.23 82.63

Speaker 2328.51 87.21 155.96 134.34 77.36
Table 2720.44 85.77 144.75 81.58 52.10

Average 2803.61 94.59 149.17 85.66 65.88

the final denoised results. The same thresholds exploited for
the computation of the outlier removal performance in Sec.
IV-B are applied. For what concerns traditional model-based
approaches, we use STM as first step for the outlier removal
task and then the resulting point clouds are processed by GLR
(STM + GLR).

We again adopt the Chamfer measure to evaluate the de-
noising performance in presence of outliers. In this case, the
number of points in the denoised and original point clouds, N2

and N1 in Eq. (4), will differ depending on the number of the
detected outliers. The median C2C values for the categories
in the test set for different levels of standard deviation are
reported in Tables VI, VII and VIII.

It can be seen that at medium and high levels of noise our
method is able to outperform the state-of-the-art, as shown
in Table VI and VII. Once again, at low level of noise the
model-based method (STM+GLR) becomes more effective
and achieves the best performance. Nevertheless, GPOD is
the best among the learning-based methods despite being
a single model. The insights on this behavior are similar
to the pure denoising experiments reported in section IV-C.
Also in this case, if more information about the noise is
provided it is possible to perform a variance-specific training
which significantly increase the performance. In particular,
at low level of noise our method achieves the best results
outperforming STM+GLR, as reported in Table IX. Tables X
and XI report the results using the Cloud to Plane metric [45]
and show a similar behavior to the aforementioned one.

Finally, qualitative results are reported in Fig. 5 for the
denoising with outlier removal task. In the figure the denoised
point clouds without outliers are shown and the surface dis-
tance of each point is reported. To measure the point-surface
distance, we use the RMSD metric previously introduced for
Fig. 4. GPOD provides on average a point-surface distance
lower with respect to the other methods. Furthermore, our
method is able to better reconstruct the original shape and
surfaces of the point cloud without loosing important details
or thinning the shape.

E. Real noise removal

In order to check if the proposed architecture can generalize
beyond white Gaussian noise, we test our model on two
realistic denoising settings.

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 9

Fig. 4. Denoising results for σ = 0.015. Color represents distance to surface (red is high, blue is low). Top left to bottom right: clean point cloud, noisy
point cloud, DGCNN (RMSD = 0.0091), APSS (0.0123), RIMLS (0.0127), AWLOP (0.0106), MRPCA (0.0096), GLR (0.0070), PointCleanNet (0.0065),
GPOD (0.0062).

Fig. 5. Denoising results for σ = 0.015 and outliers. Color represents distance to surface (red is high, blue is low). Top left to bottom right: clean point
cloud, noisy point cloud, DGCNN (RMSD = 0.011), STM + GLR (0.0077), PointCleanNet (0.0063), GPOD (0.0064).

TABLE VII
CHAMFER MEASURE (×10−6), σ = 0.015. DENOISING WITH OUTLIER

REMOVAL PERFORMANCE.
Class Noisy STM + GLR DGCNN PCN GPOD

[42] [34] [4] [7]
Airplane 2849.51 40.05 81.18 39.54 29.60
Bench 2865.19 37.90 70.71 33.73 28.01

Car 2476.96 64.21 95.72 107.50 59.25
Chair 2367.17 56.78 110.92 69.48 48.68
Lamp 2818.64 45.77 129.65 35.78 32.36
Pillow 2799.90 33.37 124.37 51.33 30.04
Rifle 3968.17 40.52 44.02 27.99 24.40
Sofa 2408.57 60.29 108.48 74.87 49.91

Speaker 2323.95 50.08 120.01 85.31 43.16
Table 2580.49 42.66 88.69 55.13 35.81

Average 2745.86 47.16 97.37 58.07 38.12

TABLE VIII
CHAMFER MEASURE (×10−6), σ = 0.01. DENOISING WITH OUTLIER

REMOVAL PERFORMANCE.
Class Noisy STM + GLR DGCNN PCN GPOD

[42] [34] [4] [7]
Airplane 2765.50 26.38 41.50 28.51 33.28
Bench 2790.02 26.36 36.32 27.53 34.80

Car 2425.01 50.87 63.01 74.52 54.56
Chair 2358.60 43.66 63.19 57.44 52.01
Lamp 2830.85 24.98 67.12 36.52 33.21
Pillow 2692.34 19.76 67.69 24.59 28.85
Rifle 3845.30 23.91 19.92 17.01 39.33
Sofa 2431.10 38.04 60.89 48.030 42.04

Speaker 2330.73 37.17 75.36 51.30 41.54
Table 2610.38 36.42 47.88 41.56 39.78

Average 2707.98 32.75 54.29 40.70 39.94

TABLE IX
MEAN CHAMFER MEASURE (×10−6), σ = 0.01. VARIANCE-SPECIFIC

TRAINING. DENOISING WITH OUTLIER REMOVAL PERFORMANCE.
Class Noisy STM + GLR DGCNN PCN GPOD

[42] [34] [4] [7]
Average 2707.98 32.75 62.24 48.46 29.77

TABLE X
MEAN POINT TO PLANE DISTANCE (×10−6). DENOISING WITH OUTLIER

REMOVAL PERFORMANCE.
σ Noisy STM + GLR DGCNN PCN GPOD

[42] [34] [4] [7]
0.02 2110.32 61.86 110.2 41.58 41.93

0.015 2058.11 24.41 68.39 25.09 17.32
0.01 2050.00 14.39 35.61 19.80 19.98

First, we train and evaluate our network on a simulated
LiDAR dataset. We simulate scanning the Shapenet objects
with a Velodyne HDL-64E scanner using the Blensor software
[46]. Two sources of noise are considered for the acquisition
process: a laser distance bias with Gaussian distribution and
a per-ray Gaussian noise. We set both distributions to be
zero-mean and with a standard deviation equal to 1% of the
longest side of the object bounding box. We also retrained
PointCleanNet on the simulated data for comparison with a

TABLE XI
MEAN POINT TO PLANE DISTANCE (×10−6), σ = 0.01.

VARIANCE-SPECIFIC TRAINING. DENOISING WITH OUTLIER REMOVAL
PERFORMANCE.

Noisy STM + GLR DGCNN PCN GPOD
[42] [34] [4] [7]

Average 2050.00 14.39 39.27 22.65 11.30

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 10

TABLE XII
VELODYNE SCAN STRUCTURED NOISE, RMSD, 8-NN.

Noisy PCN GPOD
0.1447 0.0966 0.0602

state-of-the-art model. Table XII shows that the results follow
those on white Gaussian noise, with the proposed method
improving over PointCleanNet. Note that RMSD is used as
metric in place of the Chamfer measure since it is better suited
to the case when points are not uniformly distributed.

The second experiment involves real point clouds generated
by image-based 3D reconstruction techniques. Point clouds
obtained by these methods are in general highly affected
by noise and a large amount of outliers due to image im-
perfections. We considered the multiple-view plane-sweep
algorithm (PS) [47] as image-based reconstruction method and
one of the generated point clouds provided by the algorithm
implementation in [48]. The point cloud shown in Fig. 6 on
the left is the noisy reconstruction produced by the algorithm
and is the input to the denoiser. We report qualitative results of
our method and PointCleanNet in Fig. 6 to have a benchmark
since the ground truth is not available. We exploited pre-
trained models provided by the authors to test PointCleanNet
and finetuned our network with data affected by a variable
proportion of outliers. GPOD provides a denoised point cloud
with fewer diffused outliers with respect to PointCleanNet,
as visible from the bottom-right portion of the point clouds in
Fig. 6 where PointCleanNet presents a cluster of points outside
of the main shape of the torch that cannot be easily removed
without compromising the entire shape. In general our method
is able to reconstruct sharper object details, as in the body of
the torches.

V. METHOD ANALYSIS

A. Low-rank approximation analysis

In section III-B the description of the graph-convolution
layer is reported with a particular focus on the implementation
of the aggregation weight matrix. A low-rank approximation
of maximum rank r of the weight matrix is enforced in order
to limit the memory occupation and computation complexity
as well as reduce vanishing gradient effects. We performed
several tests to study the behaviour of the network as a
function of the chosen maximum rank. Tables XIII and XIV
report the results on the denoising with outlier removal and
pure denoising tasks. We compared the value chosen for the
experiments in the previous section (r = 11) with a low rank
value (lowest complexity) and the highest rank that fit the GPU
memory. It is possible to notice that it is not true that higher
rank corresponds to an increment of the performance. On the
contrary, we verify that r = 11 provides not only a desirable
working point in terms of complexity but also achieves the
best performance.

B. Feature analysis

We analyze the characteristics of the receptive field, i.e.,
the set of points whose feature vectors influence the features

TABLE XIII
MAXIMUM RANK. DENOISING WITH OUTLIER REMOVAL PERFORMANCE.

F1 C2C (×10−6)
r 0.02 0.015 0.01 0.02 0.015 0.01
3 89.01±0.05 90.30±0.06 91.05±0.05 69.75±0.09 41.56±0.31 43.91±0.13

11 89.43±0.04 91.37±0.05 92.56±0.04 65.96±0.11 38.20±0.09 39.97±0.14

18 89.22±0.04 90.69±0.05 91.65±0.05 72.03±0.30 39.74±0.19 40.05±0.14

TABLE XIV
MAXIMUM RANK. DENOISING PERFORMANCE.

C2C (×10−6)
r 0.02 0.015 0.01
3 61.75±0.05 37.35±0.04 41.46±0.08

11 61.48±0.13 36.88±0.05 41.47±0.04

18 64.21±0.07 37.11±0.07 39.51±0.06

of a specific point, induced by the graph convolutional layers.
In Fig. 7 we show an example of the receptive field of a
single point for the output of the graph convolutional layers
of a residual block with respect to the input of the residual
block. The visualization is on the denoised point cloud. We
observe that the receptive field is quite localized in the 3D
space and its size increases as the number of layers increases.
It is interesting to note that, since the graph is dynamically
constructed in the feature space, the points of the receptive
field are not just the spatially closest ones but they are
also among the ones with similar shape characteristics. For
example, in Fig. 7 the considered point is on the lower side
of the chair stretcher and all the points of the receptive field
belong to the same part of the surface.

In order to better analyze this non-local property of the
receptive field we measure its radius in the 3D space and
compare it to a fixed graph construction where the neighbors
are determined by proximity in the noisy 3D space. Fig. 8
shows the radius of the receptive field of each point at the
output of a residual block in the denoising module with respect
to the input of the residual block. The radius is evaluated as the
90 percentile Euclidean distance in the 3D space on the clean
point cloud (90 percentile is used since the maximum might
be an unstable metric). It can be noticed that, when using the
dynamic graph construction, the radius is only slightly larger
in the first residual block but can be significantly larger in
the second one. This can be interpreted as the feature space
building and exploiting more and more non-local features with
patterns similar to those in Fig. 7.

C. Dynamic graph

An interesting study concerns the impact of the graph
computation. The dynamic graph construction, as reported in
Fig. 1, where the graph is computed in the feature space, is
compared to a fixed one, where the neighbors are identified
in the noisy 3D space. For the fixed graph construction the
neighbors are computed from the original noisy input for the
feature extraction and outlier removal blocks and from the
noisy input without the detected outliers for the denoising
block and the graph is used for all graph-convolutional layers
inside the corresponding block. Table XV demonstrates that

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 11

Fig. 6. Denoising results for real noise. Noisy point cloud (left), PointCleanNet (center), GPOD (right).

Fig. 7. Receptive field (green) and search area (black) of a point (red) for the output of the three graph-convolutional layers of the second residual block of
the network with respect to the input of the first graph-convolutional layer in the block. Effective receptive field size: 16, 65, 189 points.

TABLE XV
FIXED VS. DYNAMIC GRAPH, σ = 0.015

Denoising with outlier removal Denoising
Dynamic Fixed Dynamic Fixed

C2C (×10−6) 38.12 53.23 36.78 49.08

the use of a dynamic graph update improves the performance
thanks to the possibility of finding and exploiting latent feature
correlations.

D. Neighborhood size

Another interesting study is the effect of neighborhood
size. Selecting a larger number of neighbors for the graph-
convolutional layer increases the size of the receptive field and
can help denoise smooth areas in the point cloud by capturing
more context, at the price of losing some localization and
increased computational complexity. This is related to results
on image denoising [49], where it is known that the optimal
size of the receptive field depends on the noise variance. From
Tables XVI and XVII it is possible to observe that increasing
the number of neighbors is beneficial, up to a saturation point,
and that the optimal number is neighbors actually depends on
the noise variance. A blind method such as GPOD, therefore,

TABLE XVI
NUMBER OF NEIGHBORS (NN). DENOISING WITH OUTLIER REMOVAL

PERFORMANCE.

F1 C2C (×10−6)
NN 0.02 0.015 0.01 0.02 0.015 0.01
4 86.72 91.08 93.68 81.59 49.12 35.00
8 89.85 91.47 92.45 69.40 41.16 35.62
16 89.43 91.41 92.50 65.88 38.12 39.94
24 89.28 90.98 92.06 61.95 39.09 43.52

TABLE XVII
NUMBER OF NEIGHBORS (NN). DENOISING PERFORMANCE.

C2C (×10−6)
NN 0.02 0.015 0.01
4 80.18 49.33 34.87
8 65.93 39.80 35.40
16 61.33 36.78 40.43
24 57.27 37.68 44.12

encounters a tradeoff between good performance at high or
low variance.

VI. CONCLUSION

In this paper, we have presented the GPOD network, a novel
graph-convolutional architecture able to efficiently remove
outliers and denoise point clouds in a single blind model.

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 12

0 0.005 0.01 0.015
Receptive field radius

0

0.01

0.02

0.03

0.04

0.05

0.06

P
er

ce
nt

ag
e

of
 p

oi
nt

s

Dynamic graph
Fixed graph

0 0.01 0.02 0.03 0.04
Receptive field radius

0

0.01

0.02

0.03

0.04

0.05

0.06

P
er

ce
nt

ag
e

of
 p

oi
nt

s

Dynamic graph
Fixed graph

Fig. 8. Radius of receptive field of points at the output of residual block with respect to its input. Left: first residual block. Right: second residual block.
Neighbor selection in the noisy 3D space for fixed graph and in the feature space for dynamic graph. Radius is measured as the 90 percentile Euclidean
distance to the points in the receptive field on the clean 3D point cloud.

The core of the network is the graph-convolutional layer, that
makes the proposed architecture fully convolutional and paves
the way to learn hierarchies of features, emulating a classic
CNN behaviour. The experimental results show promising
performance at all levels of noise and especially significant
improvements over state-of-the-art techniques at high levels of
noise. Furthermore, it has been demonstrated that if additional
noise information is available, the network performance can
be further improved.

REFERENCES

[1] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3D classification and segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 652–660.

[2] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[3] M. Simonovsky and N. Komodakis, “Dynamic Edge-Conditioned Filters
in Convolutional Neural Networks on Graphs,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017, pp. 29–
38.

[4] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” ACM
Transactions on Graphics (TOG), vol. 38, no. 5, p. 146, 2019.

[5] O. Litany, A. Bronstein, M. Bronstein, and A. Makadia, “Deformable
shape completion with graph convolutional autoencoders,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2018, pp. 1886–1895.

[6] D. Valsesia, G. Fracastoro, and E. Magli, “Learning Localized Gener-
ative Models for 3D Point Clouds via Graph Convolution,” in Interna-
tional Conference on Learning Representations (ICLR) 2019, 2019.

[7] M.-J. Rakotosaona, V. La Barbera, P. Guerrero, N. J. Mitra, and
M. Ovsjanikov, “POINTCLEANNET: Learning to Denoise and Remove
Outliers from Dense Point Clouds,” in Computer Graphics Forum.
Wiley Online Library, 2019.

[8] C. Duan, S. Chen, and J. Kovacevic, “3D Point Cloud Denoising via
Deep Neural Network Based Local Surface Estimation,” in 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 8553–8557.

[9] F. Pistilli, G. Fracastoro, D. Valsesia, and E. Magli, “Learning graph-
convolutional representations for point cloud denoising,” in ECCV, 2020.

[10] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaus-
sian Denoiser: Residual Learning of Deep CNN for Image Denoising,”
IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155,
July 2017.

[11] D. Liu, B. Wen, Y. Fan, C. C. Loy, and T. S. Huang, “Non-local recurrent
network for image restoration,” in Advances in Neural Information
Processing Systems, 2018, pp. 1673–1682.

[12] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Predicting the
sequence specificities of dna-and rna-binding proteins by deep learning,”
Nature biotechnology, vol. 33, no. 8, pp. 831–838, 2015.

[13] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” in Advances in neural information
processing systems, 2015, pp. 2224–2232.

[14] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[15] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

[16] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances
in neural information processing systems, 2016, pp. 3844–3852.

[17] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M.
Bronstein, “Geometric deep learning on graphs and manifolds using
mixture model cnns,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 5115–5124.

[18] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[19] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems, 2017, pp. 1024–1034.

[20] N. Verma, E. Boyer, and J. Verbeek, “Feastnet: Feature-steered graph
convolutions for 3d shape analysis,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2018, pp. 2598–2606.

[21] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in International Conference on Learning Represen-
tations, 2018.

[22] L. Wang, Y. Huang, Y. Hou, S. Zhang, and J. Shan, “Graph attention
convolution for point cloud semantic segmentation,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 10 296–10 305.

[23] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković, “Prin-
cipal neighbourhood aggregation for graph nets,” arXiv preprint
arXiv:2004.05718, 2020.

[24] D. Valsesia, G. Fracastoro, and E. Magli, “Deep Graph-Convolutional
Image Denoising,” arXiv preprint arXiv:1907.08448, 2019.

[25] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva, “Computing and rendering point set surfaces,” IEEE Transactions
on visualization and computer graphics, vol. 9, no. 1, pp. 3–15, 2003.

[26] A. C. Öztireli, G. Guennebaud, and M. Gross, “Feature preserving
point set surfaces based on non-linear kernel regression,” in Computer
Graphics Forum, vol. 28, no. 2. Wiley Online Library, 2009, pp. 493–
501.

[27] G. Guennebaud and M. Gross, “Algebraic point set surfaces,” in ACM
Transactions on Graphics (TOG), vol. 26, no. 3. ACM, 2007, p. 23.

[28] Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer, “Parameterization-
free projection for geometry reconstruction,” in ACM Transactions on
Graphics (TOG), vol. 26, no. 3. ACM, 2007, p. 22.

[29] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and H. R. Zhang,
“Edge-aware point set resampling,” ACM transactions on graphics
(TOG), vol. 32, no. 1, p. 9, 2013.

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 13

[30] F. Cazals and M. Pouget, “Estimating differential quantities using poly-
nomial fitting of osculating jets,” Computer Aided Geometric Design,
vol. 22, no. 2, pp. 121–146, 2005.

[31] H. Avron, A. Sharf, C. Greif, and D. Cohen-Or, “l1-sparse reconstruction
of sharp point set surfaces,” ACM Transactions on Graphics (TOG),
vol. 29, no. 5, p. 135, 2010.

[32] Y. Sun, S. Schaefer, and W. Wang, “Denoising point sets via l0
minimization,” Computer Aided Geometric Design, vol. 35, pp. 2–15,
2015.

[33] E. Mattei and A. Castrodad, “Point cloud denoising via moving RPCA,”
in Computer Graphics Forum, vol. 36, no. 8. Wiley Online Library,
2017, pp. 123–137.

[34] J. Zeng, G. Cheung, M. Ng, J. Pang, and C. Yang, “3D point cloud
denoising using graph Laplacian regularization of a low dimensional
manifold model,” arXiv preprint arXiv:1803.07252, 2018.

[35] C. Dinesh, G. Cheung, and I. V. Bajic, “3D Point Cloud Denoising
via Bipartite Graph Approximation and Reweighted Graph Laplacian,”
arXiv preprint arXiv:1812.07711, 2018.

[36] Y. Schoenenberger, J. Paratte, and P. Vandergheynst, “Graph-based
denoising for time-varying point clouds,” in 2015 3DTV-Conference:
The True Vision-Capture, Transmission and Display of 3D Video (3DTV-
CON). IEEE, 2015, pp. 1–4.

[37] P. Hermosilla, T. Ritschel, and T. Ropinski, “Total Denoising: Un-
supervised Learning of 3D Point Cloud Cleaning,” arXiv preprint
arXiv:1904.07615, 2019.

[38] R. Roveri, A. C. Öztireli, I. Pandele, and M. Gross, “Pointpronets:
Consolidation of point clouds with convolutional neural networks,” in
Computer Graphics Forum, vol. 37, no. 2. Wiley Online Library, 2018,
pp. 87–99.

[39] S. Luo and W. Hu, “Differentiable manifold reconstruction for point
cloud denoising,” in Proceedings of the 28th ACM International
Conference on Multimedia, ser. MM ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1330–1338. [Online].
Available: https://doi.org/10.1145/3394171.3413727

[40] X.-F. Han, J. S. Jin, M.-J. Wang, W. Jiang, L. Gao, and L. Xiao, “A
review of algorithms for filtering the 3d point cloud,” Signal Processing:
Image Communication, vol. 57, pp. 103–112, 2017.

[41] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE signal processing magazine, vol. 30, no. 3, pp. 83–98,
2013.

[42] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards
3D Point Cloud Based Object Maps for Household Environments,”
Robotics and Autonomous Systems Journal (Special Issue on Semantic
Knowledge in Robotics), vol. 56, no. 11, pp. 927–941, 30 November
2008.

[43] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and
F. Yu, “ShapeNet: An Information-Rich 3D Model Repository,” Stanford
University — Princeton University — Toyota Technological Institute at
Chicago, Tech. Rep. arXiv:1512.03012 [cs.GR], 2015.

[44] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia, “MeshLab: an Open-Source Mesh Processing Tool,” in
Eurographics Italian Chapter Conference, V. Scarano, R. D. Chiara,
and U. Erra, Eds. The Eurographics Association, 2008.

[45] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Geometric
distortion metrics for point cloud compression,” in 2017 IEEE Inter-
national Conference on Image Processing (ICIP). IEEE, 2017, pp.
3460–3464.

[46] M. Gschwandtner, R. Kwitt, A. Uhl, and W. Pree, “BlenSor: Blender
Sensor Simulation Toolbox,” in Advances in Visual Computing, G. Bebis,
R. Boyle, B. Parvin, D. Koracin, S. Wang, K. Kyungnam, B. Benes,
K. Moreland, C. Borst, S. DiVerdi, C. Yi-Jen, and J. Ming, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 199–208.

[47] R. T. Collins, “A space-sweep approach to true multi-image matching.”
in CVPR. IEEE Computer Society, 1996, pp. 358–363.

[48] K. Wolff, C. Kim, H. Zimmer, C. Schroers, M. Botsch, O. Sorkine-
Hornung, and A. Sorkine-Hornung, “Point cloud noise and outlier
removal for image-based 3d reconstruction,” in Proceedings of Inter-
national Conference on 3D Vision (3DV), October 2016.

[49] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can
plain neural networks compete with BM3D?” in 2012 IEEE conference
on computer vision and pattern recognition. IEEE, 2012, pp. 2392–
2399.

Francesca Pistilli (IEEE Student Member) received
the M.Sc. degrees in Electronic Engineering from
Politecnico di Torino and Electrical and Com-
puter Engineering from the University of Illinois
at Chicago, Chicago, IL, in 2019 and 2020 respec-
tively. She is currently a Ph.D. student at the Image
Processing and Learning group (IPL) at Politecnico
di Torino. Her current research interests include
deep learning applied to image and point cloud
processing.

Giulia Fracastoro (IEEE Member) Giulia Fracas-
toro received the Ph.D. degree in Electronic and
Telecommunications Engineering from Politecnico
di Torino, Turin, Italy, in 2017. During 2016, she
was a visiting student at the Signal Processing
Laboratory at EPFL, working on graph learning for
image compression. She is currently an Assistant
Professor with the Department of Electronics and
Telecommunications (DET), Politecnico di Torino.
Her research interests include graph signal process-
ing, image processing, and deep learning.

Diego Valsesia (IEEE Member) received the M.Sc.
degree in telecommunications engineering from the
Politecnico di Torino, Turin, Italy, in 2012, the M.Sc.
degree in electrical and computer engineering from
the University of Illinois at Chicago, Chicago, IL,
in 2013, and the Ph.D. degree in electronic and
communication engineering from the Politecnico
di Torino, in 2016. He is currently an Assistant
Professor with the Department of Electronics and
Telecommunications (DET), Politecnico di Torino.
His main research interests include processing of

remote sensing images, compressed sensing, and deep learning.

Enrico Magli (IEEE Fellow) received the M.Sc.
and Ph.D. degrees from the Politecnico di Torino,
Torino, Italy, in 1997 and 2001, respectively. He
is currently a Full Professor with Politecnico di
Torino, Torino, Italy. His research interests include
compressive sensing, image and video coding, and
vision. He is an Associate Editor of the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS
FOR VIDEO TECHNOLOGY and the EURASIP
Journal on Image and Video Processing, and a for-
mer Associate Editor of the IEEE TRANSACTIONS

ON MULTIMEDIA. He is a Fellow of the IEEE, and has been an IEEE
Distinguished Lecturer from 2015 to 2016. He was the recipient of the
IEEE Geoscience and Remote Sensing Society 2011 Transactions Prize Paper
Award, the IEEE ICIP 2015 Best Student Paper Award (as senior author),
and the 2010 and 2014 Best Associate Editor Award of the IEEE TRANS-
ACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY.

