This paper aims at upgrading the holistic Cost Estimation methodology for High-Speed Vehicles already developed by Politecnico di Torino and the European Space Agency (ESA) to encompass different stakeholders’ perspectives. In details, the presented methodology combines International Air Transport Association (IATA) best practices with a detailed Life- Cycle Cost (LCC) assessment, which includes the evaluation of Research, Development, Test and Evaluation (RDTE) Costs, Production costs and of Direct and Indirect Operating Costs (DOC and IOC). The integrated approach allows to further extend the capabilities of the inhouse developed HyCost tool to support all the actors of the product value-chain (including engineers, manufacturers, airlines and customers) in assessing the economic sustainability of a newly under-development high-speed vehicle. However, considering the need of providing all these cost analyses perspectives since the early design stages, the derived Cost Estimation Relationships are mainly derived on statistical bases. To cope with the uncertainties that affect the initial statistical population and consequently, the CERs, this paper presents each cost item together with the estimation of related prediction intervals. Finally, results of the application of the upgraded cost estimation methodology and of the upgraded tool to the LAPCAT MR2.4 high-speed civil transport are reported and discussed.

Life-Cycle Cost Estimation for High-Speed Vehicles: from the engineers’ to the airline’s perspective / Fusaro, Roberta; Ferretto, Davide; Vercella, Valeria; Fernandez Villace, Victor; Steelant, Johan. - ELETTRONICO. - (2020). (Intervento presentato al convegno AIAA Aviation 2020 Forum nel 15-19 Giugno 2020) [10.2514/6.2020-2860].

Life-Cycle Cost Estimation for High-Speed Vehicles: from the engineers’ to the airline’s perspective

Fusaro, Roberta;Ferretto, Davide;Vercella, Valeria;
2020

Abstract

This paper aims at upgrading the holistic Cost Estimation methodology for High-Speed Vehicles already developed by Politecnico di Torino and the European Space Agency (ESA) to encompass different stakeholders’ perspectives. In details, the presented methodology combines International Air Transport Association (IATA) best practices with a detailed Life- Cycle Cost (LCC) assessment, which includes the evaluation of Research, Development, Test and Evaluation (RDTE) Costs, Production costs and of Direct and Indirect Operating Costs (DOC and IOC). The integrated approach allows to further extend the capabilities of the inhouse developed HyCost tool to support all the actors of the product value-chain (including engineers, manufacturers, airlines and customers) in assessing the economic sustainability of a newly under-development high-speed vehicle. However, considering the need of providing all these cost analyses perspectives since the early design stages, the derived Cost Estimation Relationships are mainly derived on statistical bases. To cope with the uncertainties that affect the initial statistical population and consequently, the CERs, this paper presents each cost item together with the estimation of related prediction intervals. Finally, results of the application of the upgraded cost estimation methodology and of the upgraded tool to the LAPCAT MR2.4 high-speed civil transport are reported and discussed.
2020
978-1-62410-598-2
File in questo prodotto:
File Dimensione Formato  
AIAAAviation2020_HyCost_postprint.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF Visualizza/Apri
AIAAAviation2020-HyCOST_paper_final.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2875476