Chip multiprocessors (CMPs) combine increasingly many general-purpose processor cores on a single chip. These cores run several tasks with unpredictable communication needs, resulting in uncertain and often-changing traffic patterns. This unpredictability leads network-on-chip (NoC) designers to plan for the worst case traffic patterns, and significantly overprovision link capacities. In this paper, we provide NoC designers with an alternative statistical approach. We first present the traffic-load distribution plots (T-Plots), illustrating how much capacity overprovisioning is needed to service 90, 99, or 100 percent of all traffic patterns. We prove that in the general case, plotting T-Plots is #P-complete, and therefore extremely complex. We then show how to determine the exact mean and variance of the traffic load on any edge, and use these to provide Gaussian-based models for the T-Plots, as well as guaranteed performance bounds. We also explain how to practically approximate T-Plots using random-walk-based methods. Finally, we use T-Plots to reduce the network power consumption by providing an efficient capacity allocation algorithm with predictable performance guarantees. © 2006 IEEE.
Statistical approach to networks-on-chip / Cohen, I.; Rottenstreich, O.; Keslassy, I.. - In: IEEE TRANSACTIONS ON COMPUTERS. - ISSN 0018-9340. - 59:6(2010), pp. 748-761. [10.1109/TC.2010.35]
Statistical approach to networks-on-chip
Cohen I.;
2010
Abstract
Chip multiprocessors (CMPs) combine increasingly many general-purpose processor cores on a single chip. These cores run several tasks with unpredictable communication needs, resulting in uncertain and often-changing traffic patterns. This unpredictability leads network-on-chip (NoC) designers to plan for the worst case traffic patterns, and significantly overprovision link capacities. In this paper, we provide NoC designers with an alternative statistical approach. We first present the traffic-load distribution plots (T-Plots), illustrating how much capacity overprovisioning is needed to service 90, 99, or 100 percent of all traffic patterns. We prove that in the general case, plotting T-Plots is #P-complete, and therefore extremely complex. We then show how to determine the exact mean and variance of the traffic load on any edge, and use these to provide Gaussian-based models for the T-Plots, as well as guaranteed performance bounds. We also explain how to practically approximate T-Plots using random-walk-based methods. Finally, we use T-Plots to reduce the network power consumption by providing an efficient capacity allocation algorithm with predictable performance guarantees. © 2006 IEEE.File | Dimensione | Formato | |
---|---|---|---|
NoC_journal_ToC_10.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
400.45 kB
Formato
Adobe PDF
|
400.45 kB | Adobe PDF | Visualizza/Apri |
Cohen-Statistical.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.7 MB
Formato
Adobe PDF
|
1.7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2873212