In karst and alpine areas, the interactions between water and rocks give rise to a large variety of marvellous patterns. In this work, we provide a hydrodynamic model for the formation of dissolutional patterns made of parallel longitudinal channels, commonly referred to as linear karren forms. The model addresses a laminar film of water flowing on a rock that is dissolving. The results show that a transverse instability of the water–rock system leads to a longitudinal channelization responsible for the pattern formation. The instability arises because of a positive feedback within the channels between the higher water flow and the enhanced chemical dissolution. The spatial scales predicted by the linear stability analysis span different orders of magnitude depending on the Reynolds number. This may explain why similar patterns of different sizes are observed on natural rocks. Results also show that the rock solubility affects just the temporal scale of the instability and the rock inclination plays a minor role in the pattern formation. It is eventually discussed how rain is not strictly necessary for the appearance of linear karren patterns, but it may affect some of their features.

The hydrodynamic genesis of linear karren patterns / Bertagni, M. B.; Camporeale, C.. - In: JOURNAL OF FLUID MECHANICS. - ISSN 0022-1120. - ELETTRONICO. - 913:A34(2021). [10.1017/jfm.2021.39]

The hydrodynamic genesis of linear karren patterns

M. B. Bertagni;C. Camporeale
2021

Abstract

In karst and alpine areas, the interactions between water and rocks give rise to a large variety of marvellous patterns. In this work, we provide a hydrodynamic model for the formation of dissolutional patterns made of parallel longitudinal channels, commonly referred to as linear karren forms. The model addresses a laminar film of water flowing on a rock that is dissolving. The results show that a transverse instability of the water–rock system leads to a longitudinal channelization responsible for the pattern formation. The instability arises because of a positive feedback within the channels between the higher water flow and the enhanced chemical dissolution. The spatial scales predicted by the linear stability analysis span different orders of magnitude depending on the Reynolds number. This may explain why similar patterns of different sizes are observed on natural rocks. Results also show that the rock solubility affects just the temporal scale of the instability and the rock inclination plays a minor role in the pattern formation. It is eventually discussed how rain is not strictly necessary for the appearance of linear karren patterns, but it may affect some of their features.
File in questo prodotto:
File Dimensione Formato  
Bertagni and Camporeale 2021 JFM.pdf

accesso riservato

Descrizione: Manoscritto
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2021 the hydrodynamic Main Manuscript.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2872892