Let I⊆R=K[x1,…,xn] be a toric ideal, i.e., a binomial prime ideal. We investigate when the ideal I can be “split” into the sum of two smaller toric ideals. For a general toric ideal I, we give a sufficient condition for this splitting in terms of the integer matrix that defines I. When I=IG is the toric ideal of a finite simple graph G, we give additional splittings of IG related to subgraphs of G. When there exists a splitting I=I1+I2 of the toric ideal, we show that in some cases we can describe the (multi-)graded Betti numbers of I in terms of the (multi-)graded Betti numbers of I1 and I2.
Splittings of toric ideals / Favacchio, G.; Hofscheier, J.; Keiper, G.; Van Tuyl, A.. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - STAMPA. - 574:(2021), pp. 409-433. [10.1016/j.jalgebra.2021.01.012]
Splittings of toric ideals
Favacchio G.;
2021
Abstract
Let I⊆R=K[x1,…,xn] be a toric ideal, i.e., a binomial prime ideal. We investigate when the ideal I can be “split” into the sum of two smaller toric ideals. For a general toric ideal I, we give a sufficient condition for this splitting in terms of the integer matrix that defines I. When I=IG is the toric ideal of a finite simple graph G, we give additional splittings of IG related to subgraphs of G. When there exists a splitting I=I1+I2 of the toric ideal, we show that in some cases we can describe the (multi-)graded Betti numbers of I in terms of the (multi-)graded Betti numbers of I1 and I2.File | Dimensione | Formato | |
---|---|---|---|
splittings of toric ideal postprint.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
545.7 kB
Formato
Adobe PDF
|
545.7 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
arxiv-split-tor-id.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
462.82 kB
Formato
Adobe PDF
|
462.82 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2872042