Let I⊆R=K[x1,…,xn] be a toric ideal, i.e., a binomial prime ideal. We investigate when the ideal I can be “split” into the sum of two smaller toric ideals. For a general toric ideal I, we give a sufficient condition for this splitting in terms of the integer matrix that defines I. When I=IG is the toric ideal of a finite simple graph G, we give additional splittings of IG related to subgraphs of G. When there exists a splitting I=I1+I2 of the toric ideal, we show that in some cases we can describe the (multi-)graded Betti numbers of I in terms of the (multi-)graded Betti numbers of I1 and I2.

Splittings of toric ideals / Favacchio, G.; Hofscheier, J.; Keiper, G.; Van Tuyl, A.. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - STAMPA. - 574:(2021), pp. 409-433. [10.1016/j.jalgebra.2021.01.012]

Splittings of toric ideals

Favacchio G.;
2021

Abstract

Let I⊆R=K[x1,…,xn] be a toric ideal, i.e., a binomial prime ideal. We investigate when the ideal I can be “split” into the sum of two smaller toric ideals. For a general toric ideal I, we give a sufficient condition for this splitting in terms of the integer matrix that defines I. When I=IG is the toric ideal of a finite simple graph G, we give additional splittings of IG related to subgraphs of G. When there exists a splitting I=I1+I2 of the toric ideal, we show that in some cases we can describe the (multi-)graded Betti numbers of I in terms of the (multi-)graded Betti numbers of I1 and I2.
File in questo prodotto:
File Dimensione Formato  
splittings of toric ideal postprint.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 545.7 kB
Formato Adobe PDF
545.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
arxiv-split-tor-id.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 462.82 kB
Formato Adobe PDF
462.82 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2872042