Produced water is the main by-product generated by fossil fuel extraction activities. This wastewater is often heavily contaminated and associated with significant health, safety, and environmental risks; thus, adequate treatment systems are required to bring these streams to a quality that may be suitable for their recycling, reuse, or discharge into the environment. Advanced oxidation processes (AOPs) are increasingly studied to purify produced waters, and specifically for the removal of organic pollutants in the aqueous and non-aqueous phases. This review evaluates Fenton-based oxidation, heterogeneous catalysis, electro-oxidation, photo-assisted processes, and homogeneous advanced oxidation processes to remove organic contaminants in produced water. The efficiency and applicability of the reviewed approaches are discussed with particular attention to the configurations within the water purification train. Ozonation, Fenton-based techniques, heterogeneous photocatalysis, and anodic oxidation techniques are the most widely researched AOPs in produced water treatment. Photo-assisted processes and electrochemistry have been shown to significantly improve the effectiveness of decontamination of more traditional processes. Oxidation can be exploited as polishing stage of already pre-treated effluents with the final goal of reuse with closing of the water cycle, or as a primary/secondary treatment step to facilitate subsequent biological processes and membrane separation steps. The combination of two oxidation approaches or the oxidation with a membrane-based treatment within the same hybrid system is particularly promising. Challenges, research needs, and future perspectives are thus examined to guide efforts aimed at improving the application of advanced oxidation in produced water treatment and accelerate its implementation at real scale.

Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs / Coha, Marco; Farinelli, Giulio; Tiraferri, Alberto; Minella, Marco; Vione, Davide. - In: CHEMICAL ENGINEERING JOURNAL. - ISSN 1385-8947. - 414:(2021), p. 128668. [10.1016/j.cej.2021.128668]

Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs

Coha, Marco;Farinelli, Giulio;Tiraferri, Alberto;
2021

Abstract

Produced water is the main by-product generated by fossil fuel extraction activities. This wastewater is often heavily contaminated and associated with significant health, safety, and environmental risks; thus, adequate treatment systems are required to bring these streams to a quality that may be suitable for their recycling, reuse, or discharge into the environment. Advanced oxidation processes (AOPs) are increasingly studied to purify produced waters, and specifically for the removal of organic pollutants in the aqueous and non-aqueous phases. This review evaluates Fenton-based oxidation, heterogeneous catalysis, electro-oxidation, photo-assisted processes, and homogeneous advanced oxidation processes to remove organic contaminants in produced water. The efficiency and applicability of the reviewed approaches are discussed with particular attention to the configurations within the water purification train. Ozonation, Fenton-based techniques, heterogeneous photocatalysis, and anodic oxidation techniques are the most widely researched AOPs in produced water treatment. Photo-assisted processes and electrochemistry have been shown to significantly improve the effectiveness of decontamination of more traditional processes. Oxidation can be exploited as polishing stage of already pre-treated effluents with the final goal of reuse with closing of the water cycle, or as a primary/secondary treatment step to facilitate subsequent biological processes and membrane separation steps. The combination of two oxidation approaches or the oxidation with a membrane-based treatment within the same hybrid system is particularly promising. Challenges, research needs, and future perspectives are thus examined to guide efforts aimed at improving the application of advanced oxidation in produced water treatment and accelerate its implementation at real scale.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1385894721002667-main.pdf

accesso riservato

Descrizione: Versione editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.26 MB
Formato Adobe PDF
2.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Post-print.pdf

Open Access dal 31/01/2023

Descrizione: Post-print revisionato
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2870623