Two different interpenetrating phase composites were produced using a radical photoinduced cationic frontal polymerization process. The composites were based on polyurethane (PU) and aluminium open-cell foams impregnated with a formulation of a cycloaliphatic epoxy with different concentrations of a cationic photoinitiator and a thermal initiator. The influence of both types of initiators on the frontal polymerization features was systematically evaluated for the PU foam. It was found to occur only when the concentration of both initiators was greater than 0.5 wt%, leading to full conversion of the epoxy in the whole volume of the 15 mm thick composite samples within less than 100 s. The maximum temperature reached by the propagation front was in the range 275–305 °C depending on the type of formulation, leading to pores in the epoxy phase and extensive degradation of the PU phase. In the case of the opaque aluminium foam, an additional layer of pure resin was required on the UV-exposed surface, which corresponded to a critical mass of a few grams to ensure sufficient heat generation and trigger the front propagation. © 2020 Society of Chemical Industry.

Radical photoinduced cationic frontal polymerization in porous media / Maugeri, D.; Sangermano, M.; Leterrier, Y.. - In: POLYMER INTERNATIONAL. - ISSN 0959-8103. - ELETTRONICO. - 70:3(2021), pp. 269-276. [10.1002/pi.6156]

Radical photoinduced cationic frontal polymerization in porous media

Sangermano M.;
2021

Abstract

Two different interpenetrating phase composites were produced using a radical photoinduced cationic frontal polymerization process. The composites were based on polyurethane (PU) and aluminium open-cell foams impregnated with a formulation of a cycloaliphatic epoxy with different concentrations of a cationic photoinitiator and a thermal initiator. The influence of both types of initiators on the frontal polymerization features was systematically evaluated for the PU foam. It was found to occur only when the concentration of both initiators was greater than 0.5 wt%, leading to full conversion of the epoxy in the whole volume of the 15 mm thick composite samples within less than 100 s. The maximum temperature reached by the propagation front was in the range 275–305 °C depending on the type of formulation, leading to pores in the epoxy phase and extensive degradation of the PU phase. In the case of the opaque aluminium foam, an additional layer of pure resin was required on the UV-exposed surface, which corresponded to a critical mass of a few grams to ensure sufficient heat generation and trigger the front propagation. © 2020 Society of Chemical Industry.
2021
File in questo prodotto:
File Dimensione Formato  
frontal polymerizaion porous media.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Frontal Polymerization.pdf

Open Access dal 26/11/2021

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2870242