Indoor localization has many pervasive applications, like energy management, health monitoring, and security. Tagless localization detects directly the human body, like passive infrared sensing, and is the most amenable to different users and use cases. We evaluate the localization and tracking performance, as well as resource and processing requirements of various neural network (NN) types using directly the data from a low resolution 16-pixel thermopile sensor array in a 3 m x 3 m room. Out of the multilayer perceptron, autoregressive, 1D-CNN, and LSTM NN architectures that we test, the latter require more resources but can accurately locate and capture best the person movement dynamics, while the 1D-CNN provides the best compromise between localization accuracy (9.6 cm RMSE) and movement tracking smoothness with the least resources, and seem more suited for embedded applications.
Neural Networks for Indoor Person Tracking With Infrared Sensors / Bin Tariq, O.; Lazarescu, M. T.; Lavagno, L.. - In: IEEE SENSORS LETTERS. - ISSN 2475-1472. - ELETTRONICO. - 5:1(2021), pp. 1-4. [10.1109/LSENS.2021.3049706]
Neural Networks for Indoor Person Tracking With Infrared Sensors
Bin Tariq O.;Lazarescu M. T.;Lavagno L.
2021
Abstract
Indoor localization has many pervasive applications, like energy management, health monitoring, and security. Tagless localization detects directly the human body, like passive infrared sensing, and is the most amenable to different users and use cases. We evaluate the localization and tracking performance, as well as resource and processing requirements of various neural network (NN) types using directly the data from a low resolution 16-pixel thermopile sensor array in a 3 m x 3 m room. Out of the multilayer perceptron, autoregressive, 1D-CNN, and LSTM NN architectures that we test, the latter require more resources but can accurately locate and capture best the person movement dynamics, while the 1D-CNN provides the best compromise between localization accuracy (9.6 cm RMSE) and movement tracking smoothness with the least resources, and seem more suited for embedded applications.File | Dimensione | Formato | |
---|---|---|---|
09314915.pdf
non disponibili
Descrizione: Article
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Sensors_letters_format.pdf
accesso aperto
Descrizione: Main article
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2869312