We prove an almost sure central limit theorem on the Poisson space, which is perfectly tailored for stabilizing functionals emerging in stochastic geometry. As a consequence, we provide almost sure central limit theorems for $(i)$ the total edge length of the $k$-nearest neighbors random graph, $(ii)$ the clique count in random geometric graphs, $(iii)$ the volume of the set approximation via the Poisson-Voronoi tessellation.

Almost Sure Central Limit Theorems in Stochastic Geometry / Luca Torrisi, Giovanni; Leonardi, Emilio. - In: ADVANCES IN APPLIED PROBABILITY. - ISSN 0001-8678. - STAMPA. - 52:3(2020), pp. 705-734. [10.1017/apr.2020.15]

Almost Sure Central Limit Theorems in Stochastic Geometry

Emilio Leonardi
2020

Abstract

We prove an almost sure central limit theorem on the Poisson space, which is perfectly tailored for stabilizing functionals emerging in stochastic geometry. As a consequence, we provide almost sure central limit theorems for $(i)$ the total edge length of the $k$-nearest neighbors random graph, $(ii)$ the clique count in random geometric graphs, $(iii)$ the volume of the set approximation via the Poisson-Voronoi tessellation.
File in questo prodotto:
File Dimensione Formato  
ASCLTR_CR2.pdf

Open Access dal 25/03/2021

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 393.91 kB
Formato Adobe PDF
393.91 kB Adobe PDF Visualizza/Apri
Advances2020.pdf

non disponibili

Descrizione: PDF editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 512.88 kB
Formato Adobe PDF
512.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2862338