We prove an almost sure central limit theorem on the Poisson space, which is perfectly tailored for stabilizing functionals emerging in stochastic geometry. As a consequence, we provide almost sure central limit theorems for $(i)$ the total edge length of the $k$-nearest neighbors random graph, $(ii)$ the clique count in random geometric graphs, $(iii)$ the volume of the set approximation via the Poisson-Voronoi tessellation.
Almost Sure Central Limit Theorems in Stochastic Geometry / Luca Torrisi, Giovanni; Leonardi, Emilio. - In: ADVANCES IN APPLIED PROBABILITY. - ISSN 0001-8678. - STAMPA. - 52:3(2020), pp. 705-734. [10.1017/apr.2020.15]
Titolo: | Almost Sure Central Limit Theorems in Stochastic Geometry | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1017/apr.2020.15 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
ASCLTR_CR2.pdf | 2. Post-print / Author's Accepted Manuscript | ![]() | Visibile a tuttiVisualizza/Apri | |
Advances2020.pdf | PDF editoriale | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2862338