We prove an almost sure central limit theorem on the Poisson space, which is perfectly tailored for stabilizing functionals emerging in stochastic geometry. As a consequence, we provide almost sure central limit theorems for $(i)$ the total edge length of the $k$-nearest neighbors random graph, $(ii)$ the clique count in random geometric graphs, $(iii)$ the volume of the set approximation via the Poisson-Voronoi tessellation.
Almost Sure Central Limit Theorems in Stochastic Geometry / Luca Torrisi, Giovanni; Leonardi, Emilio. - In: ADVANCES IN APPLIED PROBABILITY. - ISSN 0001-8678. - STAMPA. - 52:3(2020), pp. 705-734. [10.1017/apr.2020.15]
Almost Sure Central Limit Theorems in Stochastic Geometry
Emilio Leonardi
2020
Abstract
We prove an almost sure central limit theorem on the Poisson space, which is perfectly tailored for stabilizing functionals emerging in stochastic geometry. As a consequence, we provide almost sure central limit theorems for $(i)$ the total edge length of the $k$-nearest neighbors random graph, $(ii)$ the clique count in random geometric graphs, $(iii)$ the volume of the set approximation via the Poisson-Voronoi tessellation.File | Dimensione | Formato | |
---|---|---|---|
ASCLTR_CR2.pdf
Open Access dal 25/03/2021
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
393.91 kB
Formato
Adobe PDF
|
393.91 kB | Adobe PDF | Visualizza/Apri |
Advances2020.pdf
non disponibili
Descrizione: PDF editoriale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
512.88 kB
Formato
Adobe PDF
|
512.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2862338