In these notes we introduce a numerical function which allows us to describe explicitly (and nonrecursively) the Betti numbers, and hence, the Hilbert function of a set Z of three fat points whose support is an almost complete intersection (ACI) in P1 × P1 . A nonrecursively formula for the Betti numbers and the Hilbert function of these configurations is hard to give even for the corresponding set of five points on a special support in P2 and we did not find any kind of this result in the literature. Moreover, we also give a criterion that allows us to characterize the Hilbert functions of these special set of fat points.
On the Betti numbers of three fat points in P1 × P1 / Favacchio, G.; Guardo, E.. - In: JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY. - ISSN 0304-9914. - STAMPA. - 56:3(2019), pp. 751-766. [10.4134/JKMS.j180385]
On the Betti numbers of three fat points in P1 × P1
Favacchio G.;
2019
Abstract
In these notes we introduce a numerical function which allows us to describe explicitly (and nonrecursively) the Betti numbers, and hence, the Hilbert function of a set Z of three fat points whose support is an almost complete intersection (ACI) in P1 × P1 . A nonrecursively formula for the Betti numbers and the Hilbert function of these configurations is hard to give even for the corresponding set of five points on a special support in P2 and we did not find any kind of this result in the literature. Moreover, we also give a criterion that allows us to characterize the Hilbert functions of these special set of fat points.File | Dimensione | Formato | |
---|---|---|---|
FG-postprint editorial -korean.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
350.04 kB
Formato
Adobe PDF
|
350.04 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
FG-preprint-1701.03677.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
203.9 kB
Formato
Adobe PDF
|
203.9 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2859982