We introduce the fractal expansions, sequences of integers associated to a number. We show that these sequences characterize the Osequences and encode some information about lex segment ideals. Moreover, we introduce numerical functions called fractal functions, and we use them to solve the open problem of the classification of the Hilbert functions of any bigraded algebra.
A numerical property of hilbert functions and lex segment ideals / Favacchio, G.. - In: JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY. - ISSN 0304-9914. - STAMPA. - 57:3(2020), pp. 777-792. [10.4134/JKMS.j190380]
A numerical property of hilbert functions and lex segment ideals
Favacchio G.
2020
Abstract
We introduce the fractal expansions, sequences of integers associated to a number. We show that these sequences characterize the Osequences and encode some information about lex segment ideals. Moreover, we introduce numerical functions called fractal functions, and we use them to solve the open problem of the classification of the Hilbert functions of any bigraded algebra.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
F2-post print editorial.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
396.46 kB
Formato
Adobe PDF
|
396.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
F2-preprint.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
544.01 kB
Formato
Adobe PDF
|
544.01 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2859978