For all integers 4 ≤ r ≤ d, we show that there exists a finite simple graph G = Gr,d with toric ideal IG ⊂ R such that R/IG has (Castelnuovo-Mumford) regularity r and h-polynomial of degree d. To achieve this goal, we identify a family of graphs such that the graded Betti numbers of the associated toric ideal agree with its initial ideal, and, furthermore, that this initial ideal has linear quotients. As a corollary, we can recover a result of Hibi, Higashitani, Kimura, and O'Keefe that compares the depth and dimension of toric ideals of graphs.
Regularity and h-polynomials of toric ideals of graphs / Favacchio, G.; Keiper, G.; Van Tuyl, A.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - STAMPA. - 148:11(2020), pp. 4665-4677.
Titolo: | Regularity and h-polynomials of toric ideals of graphs |
Autori: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1090/proc/15126 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
FKVT-postprint editoriale-proc15126.pdf | Articolo principale | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
FKVT-postprint draft.pdf | Articolo principale | 2. Post-print / Author's Accepted Manuscript | ![]() | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2859714