For all integers 4 ≤ r ≤ d, we show that there exists a finite simple graph G = Gr,d with toric ideal IG ⊂ R such that R/IG has (Castelnuovo-Mumford) regularity r and h-polynomial of degree d. To achieve this goal, we identify a family of graphs such that the graded Betti numbers of the associated toric ideal agree with its initial ideal, and, furthermore, that this initial ideal has linear quotients. As a corollary, we can recover a result of Hibi, Higashitani, Kimura, and O'Keefe that compares the depth and dimension of toric ideals of graphs.

Regularity and h-polynomials of toric ideals of graphs / Favacchio, G.; Keiper, G.; Van Tuyl, A.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - STAMPA. - 148:11(2020), pp. 4665-4677. [10.1090/proc/15126]

Regularity and h-polynomials of toric ideals of graphs

Favacchio G.;
2020

Abstract

For all integers 4 ≤ r ≤ d, we show that there exists a finite simple graph G = Gr,d with toric ideal IG ⊂ R such that R/IG has (Castelnuovo-Mumford) regularity r and h-polynomial of degree d. To achieve this goal, we identify a family of graphs such that the graded Betti numbers of the associated toric ideal agree with its initial ideal, and, furthermore, that this initial ideal has linear quotients. As a corollary, we can recover a result of Hibi, Higashitani, Kimura, and O'Keefe that compares the depth and dimension of toric ideals of graphs.
File in questo prodotto:
File Dimensione Formato  
FKVT-postprint editoriale-proc15126.pdf

accesso riservato

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 241.65 kB
Formato Adobe PDF
241.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
FKVT-postprint draft.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 366.32 kB
Formato Adobe PDF
366.32 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2859714