It is well known that for higher order elliptic equations, the positivity preserving property (PPP) may fail. In striking contrast to what happens under Dirichlet boundary conditions, we prove that the PPP holds for the biharmonic operator on rectangular domains under partially hinged boundary conditions, i.e., nonnegative loads yield positive solutions. The result follows by fine estimates of the Fourier expansion of the corresponding Green function.

A positivity preserving property result for the biharmonic operator under partially hinged boundary conditions / Berchio, E.; Falocchi, A.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 200:4(2021), pp. 1651-1681. [10.1007/s10231-020-01054-6]

A positivity preserving property result for the biharmonic operator under partially hinged boundary conditions

Berchio E.;Falocchi A.
2021

Abstract

It is well known that for higher order elliptic equations, the positivity preserving property (PPP) may fail. In striking contrast to what happens under Dirichlet boundary conditions, we prove that the PPP holds for the biharmonic operator on rectangular domains under partially hinged boundary conditions, i.e., nonnegative loads yield positive solutions. The result follows by fine estimates of the Fourier expansion of the corresponding Green function.
File in questo prodotto:
File Dimensione Formato  
Berchio-Falocchi2020_Article_APositivityPreservingPropertyR.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.82 MB
Formato Adobe PDF
2.82 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2859018