We consider a partially hinged composite plate problem and we investigate qualitative properties, e.g. symmetry and monotonicity, of the eigenfunction corresponding to the density minimizing the first eigenvalue. The analysis is performed by showing related properties of the Green function of the operator and by applying polarization with respect to a fixed plane. As a by-product of the study, we obtain a Hopf type boundary lemma for the operator having its own theoretical interest. The statements are complemented by numerical results.
About Symmetry in Partially Hinged Composite Plates / Berchio, E.; Falocchi, A.. - In: APPLIED MATHEMATICS AND OPTIMIZATION. - ISSN 0095-4616. - STAMPA. - 84:3(2021), pp. 2645-2669. [10.1007/s00245-020-09722-y]
Titolo: | About Symmetry in Partially Hinged Composite Plates | |
Autori: | ||
Data di pubblicazione: | 2021 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00245-020-09722-y | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Berchio-Falocchi2020_Article_AboutSymmetryInPartiallyHinged.pdf | 2a Post-print versione editoriale / Version of Record | ![]() | Visibile a tuttiVisualizza/Apri | |
befa_symmetry_revision.pdf | Articolo principale | 2. Post-print / Author's Accepted Manuscript | ![]() | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2859016