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Abstract
We consider a partially hinged composite plate problem and we investigate qualitative
properties, e.g. symmetry and monotonicity, of the eigenfunction corresponding to
the density minimizing the first eigenvalue. The analysis is performed by showing
related properties of the Green function of the operator and by applying polarization
with respect to a fixed plane. As a by-product of the study, we obtain a Hopf type
boundary lemma for the operator having its own theoretical interest. The statements
are complemented by numerical results.

Keywords Composite plate problem · Partially hinged plate · Green function ·
Polarization
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1 Introduction

Let � = (0, π) × (−�, �) ⊂ R
2 with � > 0, we consider the weighted eigenvalue

problem:

⎧
⎪⎨

⎪⎩

�2u = λ p(x, y)u in �

u(0, y) = uxx (0, y) = u(π, y) = uxx (π, y) = 0 for y ∈ (−�, �)

uyy(x, ±�) + σuxx (x, ±�) = uyyy(x, ±�) + (2 − σ)uxxy(x, ±�) = 0 for x ∈ (0, π) ,

(1.1)
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where σ ∈ [0, 1) and, for α, β ∈ (0,+∞) with α < β fixed, p belongs to the
following family of weights:

Pα,β :=
{

p ∈ L∞(�) : α ≤ p ≤ β a.e. in � and
∫

�

p dxdy = |�|
}

. (1.2)

The interest for problem (1.1) is due to the fact that it describes the oscillating modes
of the non-homogeneous partially hinged rectangular plate�which, up to scaling, can
model the decks of footbridges and suspension bridges, see [6,23,25] for more details;
in particular, the partially hinged boundary conditions reflect the fact that decks of
bridges are supported by the ground only at the short edges. We also remark that,
in this framework, σ represents the so-called Poisson ratio which for most materials
belongs to the interval [0, 1), p represents the density function of the plate and the
integral condition in (1.2) means that the total mass of the plate is preserved.

In order to study the stability properties of the plate it is important to investigate
the effect of the density function p on the eigenvalues, i.e on the frequencies of the
plate. In this respect, the starting point of the study is the minimization problem:

inf
p∈Pα,β

λ1(p), (1.3)

where λ1(p) denotes the first eigenvalue of (1.1). There exists a rich literature deal-
ing with the second order Dirichlet version of (1.1)–(1.3) which is usually named
composite membrane problem; this corresponds to the problem of building a body of
prescribed shape andmass, out of given materials in such a way that the first frequency
of the resulting membrane is as small as possible, see e.g. [14–17] and the monograph
[27]. In the fourth order case, problem (1.3) is named composite plate problem and
has been mainly studied under clamped (Dirichlet) or hinged (Navier) boundary con-
ditions, see e.g. [3,18–22,29]. As far as we are aware, the partially hinged composite
plate problem (1.1)–(1.3) has only been studied in [9], see also [7] for results about
higher eigenvalues; in [9] it is proved that the infimum in (1.3) is achieved by the
piecewise constant density:

p̂(x, y) = αχS(x, y) + βχ�\S(x, y),

where χS denotes the characteristic function of a suitable set S ⊂ �, see Proposition
2.6 in Sect. 2. This information is useful in engineering applications, since the assem-
blage of two materials with constant density is simpler than the manufacturing of a
material having variable density; however, the region S is given in terms of sub and
super level sets of the eigenfunction u p̂ of λ1( p̂)which is not explicitly known. Hence,
in order to find more precise information about the location of the two materials, it is
important to study the qualitative properties of u p̂ . In this field of research, typical
results are qualitative properties, such as symmetry or monotonicity, of the first eigen-
function corresponding to theminimizer of (1.3), see e.g. [3,15] and references therein.
From this point of view, a crucial obstruction, when passing from the membrane to the
plate problem, i.e. from the second to the fourth order case, is represented by the loss
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of maximum and comparison principles which usually enter in the techniques applied
to prove symmetry results, such as reflections methods or moving planes techniques.
Nevertheless, some interesting results have been recently obtained in [19,20] for the
fourth order equation by exploiting suitable choices of the boundary conditions and
of the geometry of the domain for which proper comparison principles hold (e.g. by
considering Navier boundary conditions on sufficiently smooth domains or Dirichlet
boundary conditions on balls).

Regarding problem (1.1), the above mentioned difficulties are further increased by
the unusual boundary conditions and only few results about qualitative properties of
the first eigenfunction were proved in [9] for p = p(y). An important step forward in
the study of (1.1) has been recently done in [8] by computing explicitly the Fourier
expansion of the Green function of the operator in (1.1) and by showing its positivity,
see Proposition 2.1 below. In particular, as a direct consequence of these results, it
follows the positivity of the first eigenfunction of (1.1) and the simplicity of the first
eigenvalue which are not obvious facts when dealing with higher order PDEs. The
main aim of the present paper is to investigate reflection and monotonicity properties
of the Green function in order to, possibly, exploit them to deduce related properties
of the eigenfunction u p̂. Broadly speaking, the idea is to replace maximum principle
arguments, not available in this case, with arguments based on the explicit knowledge
of the Green function. To our best knowledge, this idea was first exploited in [10,24];
in particular, in [10] a variant of the moving plane method, relying on fine estimates
for the Green function [11], was developed in order to prove Gidas–Ni–Nirenberg type
symmetry results for higher order Dirichlet problems in the ball. A similar approach
has also been recently adopted in [19] for the Dirichlet composite plate problem in the
ball, in order to prove radial symmetry and monotonicity of the first eigenfunction.We
notice that all above mentioned proofs are based on polarization, a simple two-point
rearrangement for functions which is well defined in first order Sobolev spaces, spaces
of continuous functions or L p-spaces, see e.g. [5,12,13,31,32].

However, since the Green function to (1.1) is only known in terms of its Fourier
expansion, it is hard to get in our case all the precise information available for theGreen
function of the Dirichlet problem in balls, see [26, Chap.6], and, in turn, to adopt in our
framework the moving plane method as done in [19]. Nevertheless, we still managed
to apply polarization by fixing the plane of reflection equal to the line x = π/2 and
by exploiting suitable reflection properties proved for the Green function with respect
to this line. More precisely, we first establish a duality principle which reduces our
minimization problem in H2 to a maximization problem in L2 and then, with the help
of polarization, we prove a partial symmetry result in the x-direction for the maximiz-
ers of the reduced problem. We remark that, in general, it is quite delicate to exploit
polarization in the higher order case since the polarization of an H2-function is not
contained in H2 anymore; the duality principle helps us to overcome this difficulty,
see Lemma 5.1. We refer the interested reader to [10] where a similar idea was orig-
inally exploited to prove partial symmetry of minimizers for subcritical higher order
Sobolev embeddings into weighted L p spaces. Unfortunately, the fact of reflecting
with respect to a fixed plane does not allow us to get monotonicity information about
u p̂ as it happens, instead, when applying the moving plane method. However, by a
direct inspection of the Green function derivatives we succeed in deducing some local
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information about the derivatives of u p̂. It is worth mentioning that, as a by-product
of our analysis, we also obtain a Hopf type boundary lemma for the operator (1.1)
having it own theoretical interest, see Corollary 2.3.

The paper is organised as follows: in Sect. 2we set precisely our problem anwe state
our main results while in Sect. 3 we complement the study with suitable numerical
results. The other sections are devoted to the proofs of the results.

2 Main Results

The natural functional space where to set problem (1.1) is

H2∗ (�) = {u ∈ H2(�) : u = 0 on {0, π} × (−�, �)
}
.

Note that the condition u = 0 has to be meant in a classical sense because� is a planar
domain and the energy space H2∗ (�) embeds into continuous functions. Furthermore,
for σ ∈ [0, 1) fixed, H2∗ (�) is a Hilbert space when endowed with the scalar product

(u, v)H2∗ (�) :=
∫

�

[
�u�v + (1 − σ)(2uxyvxy − uxxvyy − uyyvxx )

]
dx dy

with associated norm ‖u‖2
H2∗ (�)

= (u, u)H2∗ (�) which is equivalent to the usual norm

in H2(�), see [23, Lemma 4.1]. Problem (1.1) in weak form reads

(u, ϕ)H2∗ (�) = λ(p u, ϕ)L2(�) ∀ϕ ∈ H2∗ (�). (2.4)

Hence, the first eigenvalue can be characterized as follows:

λ1(p) := min
u∈H2∗ (�)\{0}

‖u‖2
H2∗

‖√p u‖22
. (2.5)

It is well known that the sign and simplicity property of the first eigenfunction of a
differential operator are strictly related to the sign property of its Green function. For
p = (ρ,w) ∈ � fixed, theGreen function to the operator in (1.1) is, by definition, the
unique solution G(·, p) ∈ H2∗ (�) to:

(G(·, p), ϕ)H2∗ (�) = 〈δp, ϕ〉 = ϕ(p) ∀ϕ ∈ H2∗ (�)

and it has been recently computed in [8]; we recall the precise statement here below.

Proposition 2.1 [8] There holds

G(x, y, ρ,w) = 1

2π

+∞∑

m=1

ϕm(y, w)

m3 sin(mρ) sin(mx) ∀(x, y) ∈ � ∀(ρ,w) ∈ �,

(2.6)
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where the ϕm ∈ C2([−�, �] × [−�, �]) are strictly positive and strictly decreasing
with respect to m, i.e.

0 < ϕm+1(y, w) < ϕm(y, w) ∀m ∈ N
+,∀y, w ∈ [−�, �] . (2.7)

Furthermore, G ∈ C0(� × �) and

G(x, y, ρ,w) > 0 ∀(x, y) ∈ (0, π)×[−�, �] ∀(ρ,w) ∈ (0, π)×[−�, �]. (2.8)

For the explicit (and very involved) expression of the functions ϕm , we refer the
interested reader to [8]. In the present paper we enrich the statement of Proposition
2.1 by showing that:

Theorem 2.2 For all y, w ∈ [−�, �], there holds:

Gx (0, y, ρ,w) > 0 and Gx (π, y, ρ,w) < 0 ∀ρ ∈ (0, π);
Gx

(
π

2
, y, ρ,w

)

< 0 ∀ρ ∈
(

0,
π

2

)

;

Gx

(
π

2
, y,

π

2
, w

)

= 0 ; Gx

(
π

2
, y, ρ,w

)

> 0 ∀ρ ∈
(

π

2
, π

)

,

where the derivative of G in the x-direction are meant in classical sense and Gx ∈
C0(� × �). Furthermore, since G(x, y, ρ,w) = G(ρ, y, x, w), the above results
hold by inverting x and ρ.

It’s worth pointing out that neither the proof of (2.8) or that of Theorem 2.2 trivially
follow from (2.6); indeed, they require an accurate inspection of each term of the
expansion and sharp estimates. In this respect, the hardest part is the proof of (2.7)
which follows only after lengthy computations.

A remarkable consequence of Proposition 2.1 is the validity of the positivity pre-
serving property for the operator in (1.1) whereas Theorem 2.2 can be exploited to
prove a Hopf type boundary lemma. For the sake of clarity we collect both statements
in the following:

Corollary 2.3 If f ∈ L2(�) and u ∈ H2∗ (�) is a (weak) solution to

⎧
⎪⎨

⎪⎩

�2u = f in �

u(0, y) = uxx (0, y) = u(π, y) = uxx (π, y) = 0 for y ∈ (−�, �)

uyy(x, ±�) + σuxx (x, ±�) = uyyy(x, ±�) + (2 − σ)uxxy(x, ±�) = 0 for x ∈ (0, π) ,

then the following implication holds

f ≥ 0, f 
≡ 0 in � ⇒
{

u > 0 in (0, π) × [−�, �];
ux (0, y) > 0 and ux (π, y) < 0 ∀ y ∈ [−�, �], (2.9)

where the derivatives of u in (2.9) are meant in classical sense.
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Coming back to problem (1.1), in what follows we will always assume

0 < α < 1 < β .

By exploiting Proposition 2.1 and Theorem 2.2, we also obtain the following statement
about the first eigenfunction of (1.1):

Corollary 2.4 Let p ∈ Pα,β with Pα,β as in (1.2). Then, the first eigenvalue λ1(p) of
problem (1.1) is simple and the first eigenfunction u p is of one sign in�. Furthermore,
u p ∈ C3,γ (�) for some 0 < γ < 1 and, assuming u p positive, we have:

(u p)x (0, y) > 0 and (u p)x (π, y) < 0 ∀ y ∈ [−�, �] . (2.10)

Next we set
λα,β := inf

p∈Pα,β

λ1(p) . (2.11)

Definition 2.5 A couple ( p̂, û) ∈ Pα,β × H2∗ (�) is called optimal pair if p̂ achieves
the infimum in (2.11) and û is an eigenfunction associated with λ1( p̂) .

From [9, Theorem 3.2], suitably combined with Corollary 2.4, we have the follow-
ing:

Proposition 2.6 [9] There exists and optimal pair ( p̂, û) ∈ Pα,β × H2∗ (�) with û
positive. Furthermore,

p̂(x, y) = pû(x, y) := αχS(x, y) + βχ�\S(x, y) for a.e. (x, y) ∈ �, (2.12)

where χS and χ�\S are the characteristic functions of the sets S and � \ S; S ⊂ � is

such that |S| = β−1
β−α

|�| and S := {(x, y) ∈ � : 0 < û(x, y) ≤ √
t} for some t > 0.

Proposition 2.6 gives the useful information that optimal plates, in the sense of
Definition 2.5, are made by only two materials. However, the region S is given in
terms of the optimal eigenfunction û which is not explicitly known, hence, in order
to locate the position of the materials, it is important to investigate symmetry and
monotonicity properties of û. To this aim, we set

H π
2

:=
{

(x, y) ∈ R
2 : x ≤ π

2

}

(2.13)

and we denote by (x, y) ∈ R
2 the reflection of (x, y) ∈ R

2 with respect to ∂H π
2
,

i.e. x = π − x . By exploiting related reflection properties of the Green function, see
Lemma 6.4 in Sect. 6, we prove:

Theorem 2.7 Let ( p̂, û) ∈ Pα,β × H2∗ (�) be an optimal pair with û positive. Then,
one of the following alternative holds:

(i) û(x, y) > û(x, y) for all (x, y) ∈ (0, π
2 ) × [−�, �] ;
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(i i) û(x, y) < û(x, y) for all (x, y) ∈ (0, π
2 ) × [−�, �] ;

(i i i) û(x, y) = û(x, y) for all (x, y) ∈ [0, π ] × [−�, �].
In few words, according to Theorem 2.7, two situations may occur: either u p̂ is

symmetric w.r.t. ∂H π
2
, i.e. (i i i) occurs, or it is “concentrated” on one of the two half

plates delimited by ∂H π
2
, i.e. (i) or (i i) occurs. In particular, if (i) occurs then, by

symmetry, we can always find an optimal pair such that also (i i) occurs and uniqueness
of the optimal pair certainly fails. We notice that uniqueness is even not guaranteed
in case (i i i) since there could exist many weights symmetric with respect to x = π

2
and having the form (2.12); this case could be ruled out by showing very precise
monotonicity information about û. Unfortunately, the polarization approach adopted
in the proof of Theorem 2.7, by keeping the reflection plane fixed, nothing says about
the monotonicity of û; nevertheless, by direct inspection of the representation formula
of solutions, we get the following local information.

Proposition 2.8 Let ( p̂, û) ∈ Pα,β × H2∗ (�) be an optimal pair with û positive.Then,
û satisfies (2.10) and one among the following:

– if case (i) of Theorem 2.7 holds, then ûx
(

π
2 , y

)
< 0 for all y ∈ [−�, �];

– if case (i i) of Theorem 2.7 holds, then ûx
(

π
2 , y

)
> 0 for all y ∈ [−�, �];

– if case (i i i) of Theorem 2.7 holds, then ûx
(

π
2 , y

) = 0 for all y ∈ [−�, �].
For what so far stated, piecewise constant densities symmetric with respect to x = π

2
andwith the densermaterial β located near this line are among the candidates for being
optimal in the sense of Definition 2.5. Nevertheless, due to the high complexity of the
analytic expression of the coefficients in (2.6), a theoretical proof of their optimality
seems out of reach by means of our techniques; this issue is instead supported by the
numerical results we provide in Sect. 3.

We conclude the section by pointing out that, even in the second order case, the pic-
ture of results about symmetry and monotonicity properties of minimizers of Poincaré
inequalities on rectangular domains is far from being complete, when mixed bound-
ary conditions are dealt with. See e.g. [4, Sect. 6] where the authors left as on open
problem the one dimensionality of extremals for certain Poincaré inequalities arising
when dealing with the stationary Navier-Stokes equation in a square, under mixed
Dirichlet-Neumann boundary conditions. For results in this direction, but under Neu-
mann boundary conditions, we refer the interested reader to [28, Chap. II.5], [30] and
references therein.

3 Numerical Results

In this section we illustrate some numerical results which complete the statements of
Theorem 2.7 and Proposition 2.8.

3.1 Numerical Algorithm to Solve (2.11)

In order to find an optimal weight, we adopt an algorithm based on the following
rearrangement lemma.
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Lemma 3.1 [7, Lemma5.4]Let u ∈ H2∗ (�) be strictly positive in�. Then, the problem

Mα,β := sup
p∈Pα,β

∫

�

p(x, y)u2 dx dy

admits the solution pu(x, y) = αχS(x, y) + βχ�\S(x, y) for a.e. (x, y) ∈ �, where

S = S(u) ⊂ � is such that |S| = β−1
β−α

|�|. Moreover, set

t := sup

{

s > 0 : |{(x, y) ∈ � : 0 < u(x, y) ≤ √
s}| <

β − 1

β − α
|�|
}

,

we have that {(x, y) ∈ � : 0 < u(x, y) <
√
t} ⊆ S ⊆ {(x, y) ∈ � : 0 < u(x, y) ≤√

t} .

To solve (2.11) we run the numerical scheme below adjusted from [7], see also [18]
where the algorithm was proposed for the clamped and simply supported problems
and [15] for related numerical results in the second order case.

(i) We solve numerically (1.1) with an arbitrary weight p(i) and we determine the
corresponding first eigenvalue λ

(i)
1 and the first eigenfunction u(i).

(ii) We compute numerically t (i) > 0 such that |S(i)| = |{(x, y) ∈ � : 0 <

u(i)(x, y) ≤ √
t (i)}| = β−1

β−α
|�| and we define the weight

p(i+1) := pu(i) = αχS(i) (x, y) + βχ�\S(i) (x, y).

(iii) We solve numerically (1.1) with the weight p(i+1) and we determine the corre-
sponding first eigenvalue λ

(i+1)
1 and the first eigenfunction u(i+1).

(iv) Thanks to Lemma 3.1 we get

‖
√

p(i+1)u(i)‖22 ≥ ‖
√

p(i)u(i)‖22.

Notice that we can apply Lemma 3.1 with S = S(i) as in step (ii) since the u(i)

solve the equation in (1.1) a.e. hence, being strictly positive, their level sets must
have zero measure.

(v) We use the characterization (2.5)

λ
(i+1)
1 = min

u∈H2∗ (�)\{0}

‖u‖2
H2∗

‖
√

p(i+1) u‖22
=

‖u(i+1)‖2
H2∗

‖
√

p(i+1) u(i+1)‖22
≤

‖u(i)‖2
H2∗

‖
√

p(i+1) u(i)‖22
≤

‖u(i)‖2
H2∗

‖
√

p(i) u(i)‖22
= λ

(i)
1 .

(vi) Iterating the procedure, we obtain a non increasing sequence i �→ λ
(i)
1 bounded

from below by λα,β , so that the convergence of the algorithm to a certain λ1 ≥ λα,β

is assured.
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Fig. 1 The level sets of u(1) (left) and u (right) corresponding respectively to the densities p(1)(x, y) and
p(x, y). We assume N = 20 and (2.1)

Fig. 2 A comparison between the level sets of u(1) (black) and u (red) corresponding respectively to the
densities p(1) and p (Color figure online)

The only drawback of this algorithm is that we do not know a priori whetherλ1 = λα,β ;
from a numerical point of view the problem may be circumvented by repeating the
procedure with several different initial weights and noticing that we always get the
same limit. To find the approximate solution of (1.1), for a given weight, we expand
the solutions in Fourier series, adopting as orthonormal basis of L2(�) the explicit
eigenfunctions of (1.1) with p ≡ 1, known from [23]; in order to get a numerical
approximation, we truncate the series at a certain N ∈ N+ and we solve a linear
system of 2N equations where the unknowns are the Fourier coefficients, see [7] for
the details.

3.2 Conclusions

In Figs. 1 and 2we show some of our results on a plate having the following features:

σ = 0.2, � = π

5
, α = 0.5, β = 6α. (2.1)

More precisely, in Fig. 1 we compare the level sets of u(1) (left) and of u (right)
corresponding, respectively, to the weights p(1) and p plotted below, i.e. the initial
and the last weight of our algorithm: even if p(1) and u(1) are not π/2-symmetric, p
and u are π/2-symmetric. A comparison between the level sets of u(1) (black) and u
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(red) is given in Fig. 2. We triggered the algorithm with very different initial weights
p(1) either symmetric or not; after some iterations, we always get that the procedure
converges to the same density p symmetric with respect to x = π/2. Furthermore, we
repeated the experiments reducing the width of the plate � towards choices consistent
with common bridge design, e.g. � = π

150 . In any case, we recorded the same kind of
results which suggest to locate the denser material in the middle of the plate; we point
out that by reducing �wefindweights p equals toβ on a regionwhich is approximately
a rectangle centered at π/2.

In conclusion, the observed results lead us to state the following conjecture:
there exists an optimal pair ( p̂, û) of (2.11) with û symmetric w.r.t. x = π/2

and s.t.

ûx (x, y) > 0 ∀(x, y) ∈
(

0,
π

2

)

× [−�, �] ; ûx (x, y) < 0 ∀(x, y) ∈
(

π

2
, π

)

× [−�, �] ;

û y(x, y) > 0 ∀(x, y) ∈ (0, π) × (0, �] ; û y(x, y) < 0 ∀(x, y) ∈ (0, π) × [−�, 0) .

Clearly, if the above conjecture holds, by taking p̂ = pû as given in (2.12), we get
that the corresponding optimal weight is symmetric w.r.t. x = π/2 and it is equal to
β in the central part of the plate.

4 Proof of Theorem 2.2

We define the series

S1(z) :=
+∞∑

m=1

ϕm

m2 sin(mz) and S2(z) :=
+∞∑

m=1

(−1)m
ϕm

m2 sin(mz), (4.15)

with the ϕm as in (2.6), and we state two preliminary lemmas. Notice that we neglect
the dependence on y, w since it does not play a role in the proofs.

Lemma 4.1 Let the series S1(z) be as in (4.15); then

S1(z) > 0 ∀z ∈ (0, π) . (4.16)

Proof We split the proof into three steps.

Step 1 Thanks to Theorem 2.1–(2.7) we know that 0 < ϕm < ϕ1 ∀m > 1, then we
obtain

∣
∣
∣
∣

∞∑

m=2

ϕm

m2 sin(mz)

∣
∣
∣
∣ ≤ ϕ1

∞∑

m=2

| sin(mz)|
m2 ≤ ϕ1

∞∑

m=2

1

m2 = ϕ1

[
π2

6
− 1

]

∀z ∈ (0, π)

and, in turn, that

S1(z) ≥ ϕ1

[

sin(z) −
(

π2

6
− 1

)]

∀z ∈ (0, π). (4.17)
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Since arcsin
(

π2

6 − 1
)

< π
4 , through (4.17) we have

S1(z) > 0 ∀z ∈
[
π

4
,
3

4
π

]

. (4.18)

Step2Wefix N ≥ 3andwriteS1(z) =∑N
m=1

ϕm

m2 sin(mz)+∑∞
m=N+1

ϕm

m2 sin(mz) .

Then, we exploit the elementary inequality sin(mz) > sin(z), ∀z ∈ (
0, π

N+1

)
and

∀m = 2, . . . , N (see [8, Lemma 6.3] for a proof) and Theorem 2.1–(2.7) to get

N∑

m=1

ϕm

m2 sin(mz) > ϕN sin(z)
N∑

m=1

1

m2 ∀z ∈
(

0,
π

N + 1

)

. (4.19)

On the other hand, through Theorem 2.1–(2.7), we get

∣
∣
∣
∣

∞∑

m=N+1

ϕm

m2 sin(mz)

∣
∣
∣
∣ ≤

∞∑

m=N+1

ϕm

m2 | sin(mz)| ≤ ϕN

∞∑

m=N+1

1

m2 . (4.20)

By combining (4.19) and (4.20) we infer

S1(z) ≥ ϕN

(
N∑

m=1

1

m2

)

[sin z − CN ] ∀z ∈
(

0,
π

N + 1

)

, (4.21)

where

CN :=
( ∞∑

m=N+1

1

m2

)(
N∑

m=1

1

m2

)−1

.

Next we denote by zN the unique solution to the equation:

sin(z) = CN z ∈ (0, π/2) ;

the above definition makes sense for all N ≥ 1 since the map N �→ CN is positive,
strictly decreasing and 0 < CN < 1. We prove that

zN <
π

N + 2
∀N ≥ 3 . (4.22)

When N = 3, z3 ≈ 0.21 < π
5 and (4.22) follows. We complete the proof of (4.22) by

showing that

CN < sin

(
π

N + 2

)

∀N ≥ 4 . (4.23)
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To this purposewenotice that
N∑

m=1

1
m2 > 1 and

∞∑
m=N+1

1
m2 <

∫∞
N

1
x2

dx = 1
N , implying

that

CN <
1

N
∀N ≥ 2. (4.24)

To tackle (4.23) we use the estimate:

sin(x) ≥ 3

π
x ∀x ∈

(

0,
π

6

]

. (4.25)

Combining thiswith (4.24), (4.23) follows by noticing that
1

N
<

3

N + 2
for all N ≥ 4.

Finally, in view of (4.22), we get

S1(z) > 0 ∀z ∈
[

π

N + 2
,

π

N + 1

)

∀N ≥ 3. (4.26)

Hence, by combining (4.18) with (4.26) written for all 3 ≤ N ≤ N , we obtain
S1(z) > 0 ∀z ∈ [ π

N+2
, 3
4π
]
and passing to the limit as N → +∞ we conclude that

S1(z) > 0 ∀z ∈
(

0,
3

4
π

]

. (4.27)

Step 3 It remains to consider z ∈ ( 34π, π
)
. For N ≥ 3, odd integer, we set z = π −z

and we rewrite the series as

S1(z) =
N∑

m=1
odd

[
ϕm

m2 sin(mz) − ϕm+1

(m + 1)2
sin[(m + 1)z]

]

+
∞∑

m=N+2

(−1)m+1 ϕm

m2 sin(mz) ∀z ∈
(

0,
π

4

)

.

(4.28)

By Theorem 2.1 we know that ϕm > 0 and it strictly decreasing with respect to
m ∈ N

+ for all y, w ∈ [−�, �]; hence the following estimate holds:

ϕ1 sin(z) − ϕ2

23
sin(2z) = sin(z)

[

ϕ1 − ϕ2

22
cos(z)

]

>
3

4
ϕ2 sin(z) >

3

4
ϕN+1 sin(z) ∀z ∈

(

0,
π

2

)

.

(4.29)
Next, by exploiting the inequality

sin(mz)

m2 − sin[(m + 1)z]
(m + 1)2

> sin(z)

[
1

m
− 1

m + 1

]2
∀z ∈

(

0,
π

N + 1

)

, ∀m = 3, . . . , N ,
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(see Lemma 7.1 in the Appendix for a proof) and (4.29), we get

N∑

m=1
odd

[
ϕm

m2 sin(mz) − ϕm+1

(m + 1)2
sin[(m + 1)z]

]

> ϕN+1 sin(z)

[
3

4
+

N∑

m=3
odd

(
1

m
− 1

m + 1

)2]

,

(4.30)

for all z ∈ (0,
π

N + 1
). On the other hand, through the monotonicity of the ϕm , we get

∣
∣
∣
∣

∞∑

m=N+2

(−1)m+1 ϕm

m2 sin(mz)

∣
∣
∣
∣ ≤ ϕN+1

∞∑

m=N+2

1

m2 ∀z ∈ (0, π), ∀N ≥ 3. (4.31)

From (4.30)–(4.31), for all N ≥ 3 odd, we infer

S1(z) ≥ ϕN+1

[
3

4
+

N∑

m=3
odd

(
1

m
− 1

m + 1

)2]

(sin(z) − CN ) ∀z ∈
(

0,
π

N + 1

)

,

where

CN :=
( ∞∑

m=N+2

1

m2

)
⎛

⎜
⎝
3

4
+

N∑

m=3
odd

[
1

m
− 1

m + 1

]2

⎞

⎟
⎠

−1

.

Next we denote by zN the unique solution to the equation

sin(z) = CN z ∈ (0, π/2).

The above definition makes sense for all N ≥ 3, odd, since the map N �→ CN is
positive, strictly decreasing and 0 < CN < 1.

We prove that CN < sin
(

π
N+3

)
for all N ≥ 3, odd. To this aim we note that 3

4 +
N∑

m=3
odd

[ 1
m − 1

m+1

]2
> 3

4 and
∞∑

m=N+2

1
m2 <

∫∞
N+1

1
x2

dx = 1
N+1 , implying CN < 4

3(N+1)

∀N ≥ 3. Finally, by exploiting (4.25), we get CN < 4
3(N+1) ≤ 3

N+3 ≤ sin
(

π
N+3

)
for

all N ≥ 3.
Summarizing, from the above estimates we get

S1(z) > 0 ∀z ∈
[

π

N + 3
,

π

N + 1

)

∀N ≥ 3, odd .

By repeating the above argument for all 3 ≤ N ≤ N with N and N odd and taking the
union of the sets, we finally obtain S1(z) > 0 ∀z ∈ ( 34π, π − π

N+3

]
. Hence, passing

to the limit as N → +∞, and combining with (4.27) we obtain (4.16). ��
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Lemma 4.2 Let the series S2(z) be as in (4.15); then

S2(z) < 0 ∀z ∈ (0, π). (4.32)

Proof It suffices noticing that:

S2(z) = S2(π − z) = −S1(z) ∀ z, z ∈ (0, π)

with S1 as given in (4.15). Then, the thesis comes from Lemma 4.1 since S1(z) > 0
∀ z ∈ (0, π). ��

Proof of Theorem 2.2 completed We neglect the dependence on y, w since it does not
affect the results. Differentiating (2.6) with respect to x we get

Gx (x, ρ) = 1

2π

+∞∑

m=1

ϕm

m2 sin(mρ) cos(mx) .

By (4.15), we may write

Gx (0, ρ) = S1(ρ)

2π
and Gx (π, ρ) = S2(ρ)

2π
∀ρ ∈ (0, π).

Therefore, the sign of Gx (0, ρ) and of Gx (π, ρ) follows from from Lemma 4.1 and
Lemma 4.2.

Next we turn to the sign of Gx for x = π
2 . Clearly, Gx

(
π
2 , π

2

) = 0. For ρ ∈ (0, π
2 ),

we have

Gx

(
π

2
, ρ

)

= 1

8π

∞∑

k=1

(−1)k
ϕ2k

k2
sin(2kρ) = 1

8π

∞∑

k=1

(−1)k
ϕ2k

k2
sin(kρ̃) ∀ρ̃ = 2ρ ∈ (0, π) .

For ρ ∈ (π
2 , π) we have

Gx

(
π

2
, ρ

)

= 1

8π

∞∑

k=1

(−1)k
ϕ2k

k2
sin(2kρ) = 1

8π

∞∑

k=1

ϕ2k

k2
sin(kρ̃) ∀ρ̃ = 2ρ − π ∈ (0, π).

Since the ϕ2k are decreasing with respect to k, see Theorem 2.1–(2.7), the proof of the
sign of the above term follows by arguing as in the proof of Lemmas 4.1 and 4.2 with
minor changes.
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5 Proof of Corollaries 2.3, 2.4 and duality principle

5.1 Proof of Corollary 2.3

Since u writes

u(x, y) =
∫

�

G(x, y, ρ,w) f (ρ,w) dρ dw ∀(x, y) ∈ �,

the proofs of both the sign and the monotonicity issues follow as direct consequence
of the related properties of the Green function given in Proposition 2.1 and Theorem
2.2.

5.2 Proof of Corollary 2.4

The proof that the first eigenfunction is of one sign, and hence simple, follows by
exploiting the so-called dual cone decomposition technique which relies on the pos-
itivity preserving property stated in Corollary 2.3. Since the proof is standard we
omit it and we refer the interested reader to [9, Lemma 7.2] where the same issue,
together with the simplicity of the first eigenvalue, was proved for a related fourth
order eigenvalue problem in dimension 1. As concerns the regularity of u p, it follows
by combining elliptic regularity and embedding arguments. Indeed, it was proved in
[23, Lemma 4.2] that the operator in (1.1) satisfies the the complementing conditions
of Agmon–Douglis–Nirenberg [2], hence elliptic regularity theory applies. In partic-
ular, from λ1(p)pu p ∈ L∞(�) we infer that u p ∈ W 4,q(�) for all 1 < q < +∞;
then the thesis comes by noticing that W 4,q(�) ⊂ C3,γ (�) for some 0 < γ < 1, see
[1, Theorem 5.4].

Now we turn to the sign of (u p)x on the short edges. Recalling Theorem 2.2, we
have

(u p)x (0, y) = λ1(p)
∫

�

Gx (0, y, ρ,w) p(ρ,w) u p(ρ,w) dρ dw > 0 ∀y ∈ [−�, �] .

Similarly, we get (u p)x (π, y) < 0 for all y ∈ [−�, �] and this concludes the proof.

5.3 Duality Principle

Let G : L2(�) → H2∗ (�) denote the solution operator for the biharmonic equation
under partially hinged boundary conditions defined by

(G f , ϕ)H2∗ (�) :=
∫

�

f ϕ for all ϕ ∈ H2∗ (�). (4.1)

In terms of the Green function (2.6), we get the usual integral representation:

[G f ](x, y) =
∫

�

G(x, y, ρ,w) f (ρ,w) dρdw ∀(x, y) ∈ �. (4.2)
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Next, inspired by [10, Lemma 12], we associate to (2.5) the following dual maximiza-
tion problem:

�1(p) = sup
v∈L2(�)\{0}

∫

�
G(p v) p v dxdy

‖√p v‖22
. (4.3)

By standard compactness arguments, the supremum in (4.3) is achieved, furthermore,
if v is a maximizer, by exploiting (4.2) and the positivity of G, also |v| ∈ L2(�) is a
maximizer; hence, a maximizer to (4.3) can always be assumed nonnegative. Finally
we state:

Lemma 5.1 (Duality principle) Let p ∈ Pα,β , then �1(p) = λ−1
1 (p). Furthermore,

(i) if u ∈ H2∗ (�) is a positive minimizer of (2.5) with ‖√p u‖2 = 1, then u is a
maximizer for (4.3);

(i i) if v ∈ L2(�) is a nonnegative maximizer of (4.3) with ‖√p v‖2 = 1, then v ∈
H2∗ (�) and it is a minimizer for (2.5), hence positive.

Proof Let u ∈ H2∗ (�) be a positive minimizer for (2.5) with ‖√p u‖2 = 1. Then
u solves problem (1.1), therefore u = λ1G(p u). By multiplying both sides of this
equality by p u and integrating over�, we get λ1

∫

�
G(p u) p udxdy = ∫

�
p u2 dx =

‖√p u‖22 = 1, hence

�1 ≥
∫

�
G(p u) p u dxdy

‖√pu‖22
= 1

λ1
. (4.4)

Viceversa let v ∈ L2(�) be a nonnegative maximizer for (4.3) with ‖√p v‖2 = 1.
The corresponding Euler-Lagrange equation in weak form reads

∫

�

G(p v) p ϕ dxdy = �1

∫

�

p v ϕ dxdy ∀ϕ ∈ L2(�),

implying G(p v) = �1 v a. e. in �. Therefore, taking v = 1
�1

G(p v) ∈ H2∗ (�), we
obtain by (4.1)

�1‖v‖2H2∗ (�)
= �1(v, v)H2∗ (�) = (G(p v), v)H2∗ (�) =

∫

�

p v2 dxdy = 1,

so that

λ1 ≤
‖v‖2

H2∗ (�)

‖√p v‖22
= 1

�1
. (4.5)

By (4.4) and (4.5) we get �1(p) = λ−1
1 (p). But then the first inequality in (4.4)

must be an equality, and (i) follows. Similarly, the first inequality in (4.5) must be an
equality, and (i i) follows. ��

6 Proof of Theorem 2.7

By Proposition 2.6 we know that there exists an optimal pair (pû, û) ∈ Pα,β ×H2∗ (�),
with pû as given in (2.12). For the sake of simplicity, in the following we will simply
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denote (pu, u) this pair, hence

pu(x, y) := αχ{0<u≤√
t}(x, y) + βχ{u>

√
t}(x, y) with (x, y) ∈ � (4.1)

and t > 0 is fixed as in the statement of Proposition 2.6.
To beginwithwe recall some notations about the polarization of a function, adapting

the technique to our framework. Let H π
2

⊂ R
2 be the half-plane defined in (2.13);

for every (x, y) ∈ R
2 we denote by (x, y) ∈ R

2 the reflection of (x, y) with respect
to ∂H π

2
, i.e. x = π − x . For every measurable function v : � → R we define its

polarization with respect to H π
2
as vH π

2
: � → R such that

vH π
2
(x, y) :=

{
max{v(x, y), v(x, y)} if (x, y) ∈ H π

2
∩ �

min{v(x, y), v(x, y)} if (x, y) ∈ � \ H π
2

.

In the sequel, for the sake of brevity, we will simply write H instead of H π
2
and vH

instead of vH π
2
. It is readily seen that the following pointwise identity holds:

v(x, y) + v(x, y) = vH(x, y) + vH(x, y) ∀(x, y) ∈ �. (4.2)

Now, for t > 0 as fixed in (4.1), we also consider the weight:

puH(x, y) := αχ{0<uH≤√
t}(x, y) + βχ{uH>

√
t}(x, y) with (x, y) ∈ � .

By direct inspection, arguing as in the proof of Lemma 6.3 below, we have that∫

�
puH dxdy = ∫

�
p dxdy = |�|, hence puH ∈ Pα,β . Next we state two techni-

cal lemmas whose proofs can be obtained by slightly modifying the proofs of similar
statements in [19], hence we omit them.

Lemma 6.1 [19, Lemma 5.3] The following identity holds:

[pu u]H ≡ puHuH in � .

Lemma 6.2 [19, Lemma 5.4] There holds:

(i) if pu(x, y)u(x, y) ≡ [pu(x, y) u(x, y)]H in �, then u(x, y) ≡ uH(x, y) in �;
(i i) if pu(x, y)u(x, y) ≡ [pu(x, y) u(x, y)]H in �, then u(x, y) ≡ uH(x, y) in � .

Finally, we prove the identity:

Lemma 6.3 We have

∫

�

puHu2H dxdy =
∫

�

puu
2 dxdy.

123



Applied Mathematics & Optimization

Proof We compute:

∫

�
puH (x, y)u2H(x, y) dxdy = α

∫

{uH(x,y)≤√
t}
u2H(x, y) dxdy + β

∫

{uH(x,y)≥√
t}
u2H(x, y) dxdy

= α

∫

{(x,y)∈�∩H: u(x,y)≥u(x,y) ∩ u(x,y)≤√
t}
u2(x, y) dxdy

+ α

∫

{(x,y)∈�∩H: u(x,y)>u(x,y) ∩ u(x,y)≤√
t}
u2(x, y) dxdy

+ α

∫

{(x,y)∈�\H: u(x,y)>u(x,y) ∩ u(x,y)≤√
t}
u2(x, y) dxdy

+ α

∫

{(x,y)∈�\H: u(x,y)≥u(x,y) ∩ u(x,y)≤√
t}
u2(x, y) dxdy

+ β

∫

{(x,y)∈�∩H: u(x,y)≥u(x,y) ∩ u(x,y)>
√
t}
u2(x, y) dxdy

+ β

∫

{(x,y)∈�∩H: u(x,y)>u(x,y) ∩ u(x,y)>
√
t}
u2(x, y) dxdy

+ β

∫

{(x,y)∈�\H: u(x,y)>u(x,y) ∩ u(x,y)>
√
t}
u2(x, y) dxdy

+ β

∫

{(x,y)∈�\H: u(x,y)≥u(x,y) ∩ u(x,y)>
√
t}
u2(x, y) dxdy

= α

∫

{(x,y)∈�:u(x,y)≤√
t}
u2(x, y) dxdy + β

∫

{(x,y)∈�:u(x,y)>
√
t}
u2(x, y) dxdy

=
∫

�
pu(x, y)u2(x, y) dxdy,

where the first equality in the last line simply comes by changing variables. ��

Next we turn to the proof of some reflection properties of the Green function G
that will be crucial in the following.

Lemma 6.4 For (x, y) ∈ H ∩ � and (ρ,w) ∈ H ∩ � we have:

(i) G(x, y, ρ,w) ≥ max{G(x, y, ρ,w),G(x, y, ρ,w)} with strict inequality if
x, ρ 
= 0, π

2 ;
(i i) G(x, y, ρ,w) = G(x, y, ρ,w);

(i i i) G(x, y, ρ,w) = G(x, y, ρ,w).

Proof The variables y, w do not play a role, hence we fix them and we do not write
them in the proof. ��

Proof of (i) We study the sign of

G(x, ρ) − G(x, ρ) = 1

π

+∞∑

m=1

ϕm

m3 sin(mρ) sin

[

m

(

x − π

2

)]

cos

(

m
π

2

)

= 1

π

+∞∑

k=1

ϕ2k

(2k)3
sin(2kρ)(−1)k sin(2kx)(−1)k ∀(x, ρ) ∈ [0, π/2]2.
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For x̃ = 2x and ρ̃ = 2ρ, we observe that

1

8π

+∞∑

k=1

ϕ2k

k3
sin(kρ̃) sin(kx̃) > 0 ∀(̃x, ρ̃) ∈ (0, π)2 .

The proof the above inequality can be obtained by repeating, with minor changes, the
proof of (2.8) as given in [8, Theorem 2.2]. The main ingredient is the monotonicity
of the functions ϕ2k with respect to k. This implies that G(x, ρ) − G(x, ρ) > 0 for
all (x, ρ) ∈ (0, π/2)2. We observe that for x ∈ {0, π/2} or ρ ∈ {0, π/2} we have
G(x, ρ) = G(x, ρ), giving G(x, ρ) ≥ G(x, ρ) for all (x, ρ) ∈ [0, π/2]2.

Repeating the above arguments, but inverting the variables x and ρ, we get the
statement (i). ��
Proof of (ii) and (iii) For all (x, ρ) ∈ [0, π ]2 we get

G(x, ρ) = 1

2π

+∞∑

m=1

ϕm

m3 sin[m(π − ρ)] sin[m(π − x)] = 1

2π

+∞∑

m=1

ϕm

m3 sin(mρ) sin(mx) = G(x, ρ),

G(x, ρ) = 1

2π

+∞∑

m=1

ϕm

m3 sin(mρ) sin[m(π − x)] = 1

2π

+∞∑

m=1

(−1)m+1 ϕm

m3 sin(mρ) sin(mx) = G(x, ρ) .

��
Thanks to Lemma 6.4 we obtain:

Lemma 6.5 Let G : L2(�) → H2∗ (�) denote the solution operator defined by (4.1).
Then,

∫

�

G(puu) pu(x, y)u(x, y) dxdy ≤
∫

�

G(puHuH) puH(x, y)uH(x, y) dxdy,

(4.3)
and the equality holds in (4.3) if and only if

pu(x, y)u(x, y) = [pu(x, y)u(x, y)]H a.e. in � or pu(x, y)u(x, y) = [pu(x, y)u(x, y)]H a.e. in � .

Proof We define

A(g, h) :=
∫

�×�

G(x, y, ρ,w)pg(x, y)ph(ρ,w)g(x, y)h(ρ,w) dxdydρdw

where g and h have to be meant equal to u or uH . Then, by writing � × � =
[(�∩H)×(�∩H)]∪[(�∩H)×(�\H)]∪[(�\H)×(�∩H)]∪[(�\H)×(�\H)]
and changing variables properly, we get

A(uH, uH) − A(uH, u) =
∫

(�∩H)×(�∩H)

G(x, y, ρ,w)puH(x, y)uH(x, y)[puH(ρ,w)uH(ρ,w)
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− pu(ρ,w)u(ρ,w)] dxdydρdw

+
∫

(�∩H)×(�∩H)

G(x, y, ρ,w)puH(x, y)uH(x, y)[puH(ρ,w)uH(ρ,w)

− pu(ρ,w)u(ρ,w)] dxdydρdw

+
∫

(�∩H)×(�∩H)

G(x, y, ρ,w)puH(x, y)uH(x, y)[puH(ρ,w)uH(ρ,w)

− pu(ρ,w)u(ρ,w)] dxdydρdw

+
∫

(�∩H)×(�∩H)

G(x, y, ρ,w)puH(x, y)uH(x, y)[puH(ρ,w)uH(ρ,w)

− pu(ρ,w)u(ρ,w)] dxdydρdw.

By Lemma 6.1 and (4.2) we have

puH(ρ,w)uH(ρ,w) − pu(ρ,w)u(ρ,w) = −[puH(ρ,w)uH(ρ,w)

−pu(ρ,w)u(ρ,w)] ∀(ρ,w) ∈ �,

so that

A(uH, uH) − A(uH, u) =
∫

(�∩H)×(�∩H)
[G(x, y, ρ,w) − G(x, y, ρ, w)]puH (x, y)uH(x, y)[puH (ρ, w)uH(ρ, w)

− pu(ρ, w)u(ρ,w)] dxdydρdw

+
∫

(�∩H)×(�∩H)
[G(x, y, ρ,w) − G(x, y, ρ, w)]puH (x, y)uH(x, y)[puH (ρ, w)uH(ρ, w)

− pu(ρ, w)u(ρ,w)] dxdydρdw.

Then, thanks to Lemma 6.4 (i i) and (i i i) we conclude that
A(uH, uH) − A(uH, u)

=
∫

(�∩H)×(�∩H)
[G(x, y, ρ,w) − G(x, y, ρ, w)]

× [puH (x, y)uH(x, y) − puH (x, y)uH(x, y)][puH (ρ, w)uH(ρ, w)

− pu(ρ, w)u(ρ,w)] dxdydρdw.

(4.4)

With similar arguments we get

A(uH, u) − A(u, u)

=
∫

(�∩H)×(�∩H)

[G(x, y, ρ,w) − G(x, y, ρ,w)]
× [pu(x, y)u(x, y) − pu(x, y)u(x, y)][puH(ρ,w)uH(ρ,w)

− pu(ρ,w)u(ρ,w)] dxdydρdw

(4.5)
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and combining (4.4)–(4.5) we obtain

A(uH, uH) − A(u, u)

=
∫

(�∩H)×(�∩H)
[G(x, y, ρ, w) − G(x, y, ρ, w)][puH (ρ, w)uH(ρ, w) − pu (ρ, w)u(ρ, w)]

× [puH (x, y)uH(x, y)

− puH (x, y)uH(x, y) + pu (x, y)u(x, y)

− pu (x, y)u(x, y)] dxdydρdw.

Now, by Lemma 6.4(i), we know that G(x, y, ρ,w) − G(x, y, ρ,w) ≥ 0 while, by
Lemma 6.1, we get

puH (ρ, w)uH(ρ, w) − pu(ρ, w)u(ρ,w) = [pu(ρ, w) u(ρ, w)]H − pu(ρ,w)u(ρ,w) ≥ 0

∀(ρ, w) ∈ � ∩ H .

Finally, (4.3) follows by noticing that, through Lemma 6.1 and (4.2), we have

[puH(x, y)uH(x, y) − puH(x, y)uH(x, y) + pu(x, y)u(x, y) − pu(x, y)u(x, y)]
= 2{[pu(x, y)u(x, y)]H − pu(x, y)u(x, y)} ≥ 0 ∀(x, y) ∈ � ∩ H .

To prove the last part of the statement we set D1 := {(x, y) ∈ � ∩ H :
pu(x, y)u(x, y) > pu(x, y)u(x, y)} andD2 := {(ρ,w) ∈ �∩H : [pu(ρ,w)u(ρ,w)]H >

pu(ρ,w)u(ρ,w)}. If equality holds in (4.3) we get

0 = A(uH, uH) − A(u, u)

=
∫

D1×D2

[G(x, y, ρ,w) − G(x, y, ρ, w)]{[pu(ρ, w) u(ρ, w)]H − pu(ρ, w)u(ρ,w)}

× 2{[pu(x, y)u(x, y)]H − pu(x, y)u(x, y)} dxdydρdw .

(4.6)

Now, (4.6) makes sense if and only if |D1| = 0 or |D2| = 0, i.e., if and only if
[pu(x, y)u(x, y)]H = pu(x, y)u(x, y) or [pu(x, y)u(x, y)]H = pu(x, y)u(x, y) a.e.
in �. ��
Proof of Theorem 2.7 completed Thanks to Lemma 5.1 we have that u is a maximizer
for (4.3) with p = pu . Then, since (u, pu) is an optimal pair, uH ∈ L2(�) and
puH ∈ Pα,β , we infer that

∫

�
G(puu) pu u dxdy

‖√pu u‖22
= �1(pu) ≥ �1(puH) ≥

∫

�
G(puHuH) puH uH dxdy

‖√puH uH‖22
.

Recalling that, by Lemma 6.3, ‖√puHuH‖2 = ‖√puu‖2, from above we get that

∫

�

G(puu) pu u dxdy ≥
∫

�

G(puHuH) puH uH dxdy .
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Then, by Lemma 6.5, (4.3) holds with the equality and, in view of Lemma 6.2, this
implies u(x, y) = uH(x, y) or u(x, y) = uH(x, y) a.e. in �. Since u is continuous,
we obtain

u(x, y) ≥ u(x, y) in � ∩ H or u(x, y) ≤ u(x, y) in � ∩ H. (4.7)

Let us consider the first case of (4.7); then, it is readily seen that:

pu(x, y)u(x, y) ≥ pu(x, y) u(x, y) ∀(x, y) ∈ � ∩ H . (4.8)

Indeed, if pu(x0, y0)u(x0, y0) < pu(x0, y0) u(x0, y0) for some (x0, y0) ∈ � ∩H, by
(4.7) we get pu(x0, y0) = α and pu(x0, y0) = β. But then u(x0, y0) ≤ u(x0, y0) ≤√
t and pu(x0, y0) = α which is a contradiction.
Suppose now that there exists (x1, y1) ∈ �∩H such that the strict inequality holds

in the first of (4.7), clearly x1 
= 0, π/2. Then, by continuity, there exists a subset
U ⊂ (� ∩H) of positive measure such that u(x, y) > u(x, y) for all (x, y) ∈ U and,
by arguing as for the proof of (4.8), such that

pu(x, y)u(x, y) > pu(x, y) u(x, y) ∀(x, y) ∈ U . (4.9)

Finally, through Lemma 6.4, (4.8) and (4.9), for all (x, y) ∈ (0, π
2 ) × [−�, �] we

obtain

u(x, y) − u(x, y)

=
∫

�
[G(x, y, ρ,w) − G(x, y, ρ,w)]pu(ρ, w)u(ρ,w) dρdw

=
∫

�∩H
{[G(x, y, ρ,w) − G(x, y, ρ,w)]pu(ρ, w)u(ρ,w)

+ [G(x, y, ρ, w) − G(x, y, ρ, w)]pu(ρ, w)u(ρ, w)} dρdw

=
∫

�∩H
[G(x, y, ρ,w) − G(x, y, ρ,w)][pu(ρ, w)u(ρ,w) − pu(ρ, w)u(ρ,w)] dρdw

≥
∫

U
[G(x, y, ρ,w) − G(x, y, ρ,w)][pu(ρ,w)u(ρ, w) − pu(ρ, w)u(ρ, w)] dρdw > 0,

implying that (i) or (i i i) holds. Similarly, if we consider the second inequality in (4.7),
we get that (i i) or (i i i) holds. This concludes the proof. ��

7 Proof of Proposition 2.8

First, for all ρ ∈ (0, π) and y, w ∈ [−�, �], we note that

Gx

(
π

2
, y, ρ,w

)

= 1

8π

∞∑

k=1

(−1)k
ϕ2k(y, w)

k2
sin(2kρ) = −Gx

(
π

2
, y, ρ,w

)

.
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By exploiting the above equality we write

ux

(
π

2
, y

)

=
∫ �

−�

∫ π/2

0
Gx

(
π

2
, y, ρ,w

)

[pu(ρ,w)u(ρ,w)

− pu(ρ,w)u(ρ,w)] dρdw ∀y ∈ [−�, �].

From Theorem 2.2 we know that Gx
(

π
2 , y, ρ,w

)
< 0 for all ρ ∈ (0, π

2

)
; then, if case

(i) of Theorem 2.7 holds, by (4.8)–(4.9), we get pu(ρ,w)u(ρ,w) > pu(ρ,w)u(ρ,w)

and, in turn, that ux
(

π
2 , y

)
< 0 for all y ∈ [−�, �]. Similarly, the reverse inequal-

ity holds if case (i i) occurs. Finally, when (i i i) holds, then pu(ρ,w)u(ρ,w) ≡
pu(ρ,w)u(ρ,w) in �, hence ux

(
π
2 , y

) = 0 for all y ∈ [−�, �].
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Appendix

Lemma 7.1 Let N ≥ 3 be an integer. For all z ∈ (0, π
N+1

)
and for all m = 3, . . . , N,

there holds

υm(z) := sin(mz)

m2 − sin[(m + 1)z]
(m + 1)2

− sin(z)

[
1

m
− 1

(m + 1)

]2

> 0 .

Proof Clearly, υm(0) = 0; we set am := [ 1
m2 − 1

(m+1)2
]2 and we compute

υ ′
m(z) = cos(mz)

m
− cos[(m + 1)z]

m + 1
− am cos(z)

υ ′′
m(z) = sin[(m + 1)z] − sin(mz) + am sin(z).

Using the complex identities for the trigonometric functions we obtain

sin[(m + 1)z] − sin(mz) = 0 ⇐⇒ z = 2kπ,
(1 + 2k)π

2m + 1
∀k ∈ Z (7.47)

123

http://creativecommons.org/licenses/by/4.0/


Applied Mathematics & Optimization

Hence sin[(m + 1)z] > sin(mz) for z ∈ (0, π
2m+1

)
and υ ′′

m(z) > 0 for z ∈ (0, π
2m+1

)
;

this readily implies that υm(z) > 0 for z ∈ (0, π
2m+1

]
.

For z ∈ ( π
2m+1 ,

π
m+1

)
we have

υm(z) = sin(mz)

m2 − sin[(m + 1)z]
(m + 1)2

− sin z

m

[
1

m
− 1

m + 1

]

+ sin z

m + 1

[
1

m
− 1

m + 1

]

>
sin(mz)

m2 − sin[(m + 1)z]
(m + 1)2

− sin
[

π
m+1

]

m

[
1

m
− 1

m + 1

]

:= υm(z).

We study the sign of υm(z) for z ∈ ( π
2m+1 ,

π
m+1

)
. We have

υ ′′
m(z) = sin[(m + 1)z] − sin(mz) < 0 ∀z ∈

(
π

2m + 1
,

π

m + 1

)

,

since, by (7.47), we have sin[(m + 1)z] − sin(mz) < 0 for z ∈ ( π
2m+1 ,

3π
2m+1

)
and

π
m+1 < 3π

2m+1 for m ≥ 3. Thus if υm
(

π
m+1

)
> 0 and υm

(
π

2m+1

)
> 0 we conclude that

υm(z) > 0 for z ∈ ( π
2m+1 ,

π
m+1

)
and, in turn, υm(z) > 0 for all z ∈ ( π

2m+1 ,
π

m+1

)
.

Recalling that sin
( mπ
m+1

) = sin
(

π
m+1

)
we get

υm

(
π

m + 1

)

= sin

(
π

m + 1

)[
1

m2 − 1

m2 + 1

m(m + 1)

]

> 0 ∀m ≥ 3.

Moreover sin
( mπ
2m+1

) = sin
(

(m+1)π
2m+1

)
so that

υm

(
π

2m + 1

)

= sin

(
mπ

2m + 1

)[
1

m2 − 1

(m + 1)2

]

− sin

(
π

m + 1

)[
1

m2 − 1

m(m + 1)

]

.

We observe that sin
( mπ
2m+1

)
> sin

(
π

m+1

)
> 0 for all m ≥ 3, indeed π

2 > mπ
2m+1 >

π
m+1 > 0 for allm ≥ 3; moreover we have 1

m2 − 1
(m+1)2

> 1
m2 − 1

m(m+1) > 0, implying

υm
(

π
2m+1

)
> 0. This concludes the proof. ��
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