We introduce a decreasing one-parameter family Xγ(M) , γ> 0 , of Banach subspaces of the Hardy–Goldberg space h1(M) on certain nondoubling Riemannian manifolds with bounded geometry, and we investigate their properties. In particular, we prove that X1 / 2(M) agrees with the space of all functions in h1(M) whose Riesz transform is in L1(M) , and we obtain the surprising result that this space does not admit an atomic decomposition.

A family of Hardy-type spaces on nondoubling manifolds / Martini, A.; Meda, S.; Vallarino, M.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 199:5(2020), pp. 2061-2085. [10.1007/s10231-020-00956-9]

A family of Hardy-type spaces on nondoubling manifolds

Martini A.;Vallarino M.
2020

Abstract

We introduce a decreasing one-parameter family Xγ(M) , γ> 0 , of Banach subspaces of the Hardy–Goldberg space h1(M) on certain nondoubling Riemannian manifolds with bounded geometry, and we investigate their properties. In particular, we prove that X1 / 2(M) agrees with the space of all functions in h1(M) whose Riesz transform is in L1(M) , and we obtain the surprising result that this space does not admit an atomic decomposition.
File in questo prodotto:
File Dimensione Formato  
MartiniMedaVallarinoAMPA.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.75 MB
Formato Adobe PDF
2.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
math.FA.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 333.42 kB
Formato Adobe PDF
333.42 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2858147