We introduce a decreasing one-parameter family Xγ(M) , γ> 0 , of Banach subspaces of the Hardy–Goldberg space h1(M) on certain nondoubling Riemannian manifolds with bounded geometry, and we investigate their properties. In particular, we prove that X1 / 2(M) agrees with the space of all functions in h1(M) whose Riesz transform is in L1(M) , and we obtain the surprising result that this space does not admit an atomic decomposition.
A family of Hardy-type spaces on nondoubling manifolds / Martini, A.; Meda, S.; Vallarino, M.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 199:5(2020), pp. 2061-2085. [10.1007/s10231-020-00956-9]
A family of Hardy-type spaces on nondoubling manifolds
Martini A.;Vallarino M.
2020
Abstract
We introduce a decreasing one-parameter family Xγ(M) , γ> 0 , of Banach subspaces of the Hardy–Goldberg space h1(M) on certain nondoubling Riemannian manifolds with bounded geometry, and we investigate their properties. In particular, we prove that X1 / 2(M) agrees with the space of all functions in h1(M) whose Riesz transform is in L1(M) , and we obtain the surprising result that this space does not admit an atomic decomposition.File | Dimensione | Formato | |
---|---|---|---|
MartiniMedaVallarinoAMPA.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.75 MB
Formato
Adobe PDF
|
2.75 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
math.FA.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
333.42 kB
Formato
Adobe PDF
|
333.42 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2858147