We introduce a decreasing one-parameter family Xγ(M) , γ> 0 , of Banach subspaces of the Hardy–Goldberg space h1(M) on certain nondoubling Riemannian manifolds with bounded geometry, and we investigate their properties. In particular, we prove that X1 / 2(M) agrees with the space of all functions in h1(M) whose Riesz transform is in L1(M) , and we obtain the surprising result that this space does not admit an atomic decomposition.
A family of Hardy-type spaces on nondoubling manifolds / Martini, A.; Meda, S.; Vallarino, M.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 199:5(2020), pp. 2061-2085.
Titolo: | A family of Hardy-type spaces on nondoubling manifolds |
Autori: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s10231-020-00956-9 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
MartiniMedaVallarinoAMPA.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia | |
math.FA.pdf | articolo principale | 1. Preprint / Submitted Version | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2858147