We consider an infinite homogeneous tree V endowed with the usual metric d defined on graphs and a weighted measure μ. The metric measure space (V, d, μ) is nondoubling and of exponential growth, hence the classical theory of Hardy and BMO spaces does not apply in this setting. We introduce a space BMO(μ) on (V, d, μ) and investigate some of its properties. We prove in particular that BMO(μ) can be identified with the dual of a Hardy space H1(μ) introduced in a previous work and we investigate the sharp maximal function related with BMO(μ).
BMO Spaces on Weighted Homogeneous Trees / Arditti, L.; Tabacco, A.; Vallarino, M.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - STAMPA. - 31:Part of a collection: A Celebration of Guido L.Weiss for his Ninetieth Birthday(2021), pp. 8832-8849. [10.1007/s12220-020-00435-w]
BMO Spaces on Weighted Homogeneous Trees
Arditti L.;Tabacco A.;Vallarino M.
2021
Abstract
We consider an infinite homogeneous tree V endowed with the usual metric d defined on graphs and a weighted measure μ. The metric measure space (V, d, μ) is nondoubling and of exponential growth, hence the classical theory of Hardy and BMO spaces does not apply in this setting. We introduce a space BMO(μ) on (V, d, μ) and investigate some of its properties. We prove in particular that BMO(μ) can be identified with the dual of a Hardy space H1(μ) introduced in a previous work and we investigate the sharp maximal function related with BMO(μ).| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											Arditti-Tabacco-Vallarino-VF-13May20.pdf
										
																				
									
										
											 Open Access dal 14/06/2021 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
									
									
									
									
										
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
									
									
										Dimensione
										313.76 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								313.76 kB | Adobe PDF | Visualizza/Apri | 
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											s12220-020-00435-w.pdf
										
																				
									
										
											 accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
									
									
									
									
										
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
									
									
										Dimensione
										309.68 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								309.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2858145
			
		
	
	
	
			      	