We consider an infinite homogeneous tree V endowed with the usual metric d defined on graphs and a weighted measure μ. The metric measure space (V, d, μ) is nondoubling and of exponential growth, hence the classical theory of Hardy and BMO spaces does not apply in this setting. We introduce a space BMO(μ) on (V, d, μ) and investigate some of its properties. We prove in particular that BMO(μ) can be identified with the dual of a Hardy space H1(μ) introduced in a previous work and we investigate the sharp maximal function related with BMO(μ).
BMO Spaces on Weighted Homogeneous Trees / Arditti, L.; Tabacco, A.; Vallarino, M.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - STAMPA. - 31:Part of a collection: A Celebration of Guido L.Weiss for his Ninetieth Birthday(2021), pp. 8832-8849. [10.1007/s12220-020-00435-w]
BMO Spaces on Weighted Homogeneous Trees
Arditti L.;Tabacco A.;Vallarino M.
2021
Abstract
We consider an infinite homogeneous tree V endowed with the usual metric d defined on graphs and a weighted measure μ. The metric measure space (V, d, μ) is nondoubling and of exponential growth, hence the classical theory of Hardy and BMO spaces does not apply in this setting. We introduce a space BMO(μ) on (V, d, μ) and investigate some of its properties. We prove in particular that BMO(μ) can be identified with the dual of a Hardy space H1(μ) introduced in a previous work and we investigate the sharp maximal function related with BMO(μ).File | Dimensione | Formato | |
---|---|---|---|
Arditti-Tabacco-Vallarino-VF-13May20.pdf
Open Access dal 14/06/2021
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
313.76 kB
Formato
Adobe PDF
|
313.76 kB | Adobe PDF | Visualizza/Apri |
s12220-020-00435-w.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
309.68 kB
Formato
Adobe PDF
|
309.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2858145