We consider an infinite homogeneous tree V endowed with the usual metric d defined on graphs and a weighted measure μ. The metric measure space (V, d, μ) is nondoubling and of exponential growth, hence the classical theory of Hardy and BMO spaces does not apply in this setting. We introduce a space BMO(μ) on (V, d, μ) and investigate some of its properties. We prove in particular that BMO(μ) can be identified with the dual of a Hardy space H1(μ) introduced in a previous work and we investigate the sharp maximal function related with BMO(μ).

BMO Spaces on Weighted Homogeneous Trees / Arditti, L.; Tabacco, A.; Vallarino, M.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - STAMPA. - Volume ``A Celebration of Guido L. Weiss for his Ninetieth Birthday":(2020). [10.1007/s12220-020-00435-w]

BMO Spaces on Weighted Homogeneous Trees

Arditti L.;Tabacco A.;Vallarino M.
2020

Abstract

We consider an infinite homogeneous tree V endowed with the usual metric d defined on graphs and a weighted measure μ. The metric measure space (V, d, μ) is nondoubling and of exponential growth, hence the classical theory of Hardy and BMO spaces does not apply in this setting. We introduce a space BMO(μ) on (V, d, μ) and investigate some of its properties. We prove in particular that BMO(μ) can be identified with the dual of a Hardy space H1(μ) introduced in a previous work and we investigate the sharp maximal function related with BMO(μ).
File in questo prodotto:
File Dimensione Formato  
Arditti2020_Article_BMOSpacesOnWeightedHomogeneous.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 335.05 kB
Formato Adobe PDF
335.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Arditti-Tabacco-Vallarino-VF-13May20.pdf

Open Access dal 14/06/2021

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 313.76 kB
Formato Adobe PDF
313.76 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2858145