We extend the recently developed generalized Floquet theory [Phys. Rev. Lett. 110, 170602 (2013)] to systems with innite memory, i.e., a dependence on the whole previous history. In particular, we show that a lower asymptotic bound exists for the Floquet exponents associated to such cases. As examples, we analyze the cases of an ideal 1D system, a Brownian particle, and a circuit resonator with an ideal transmission line. All these examples show the usefulness of this new approach to the study of dynamical systems with memory, which are ubiquitous in science and technology.
Application of Floquet theory to dynamical systems with memory / Traversa, Fabio L.; Di Ventra, Massimiliano; Cappelluti, Federica; Bonani, Fabrizio. - In: CHAOS. - ISSN 1054-1500. - ELETTRONICO. - 30:12(2020), p. 123102. [10.1063/5.0016058]
Application of Floquet theory to dynamical systems with memory
Traversa, Fabio L.;Cappelluti, Federica;Bonani, Fabrizio
2020
Abstract
We extend the recently developed generalized Floquet theory [Phys. Rev. Lett. 110, 170602 (2013)] to systems with innite memory, i.e., a dependence on the whole previous history. In particular, we show that a lower asymptotic bound exists for the Floquet exponents associated to such cases. As examples, we analyze the cases of an ideal 1D system, a Brownian particle, and a circuit resonator with an ideal transmission line. All these examples show the usefulness of this new approach to the study of dynamical systems with memory, which are ubiquitous in science and technology.File | Dimensione | Formato | |
---|---|---|---|
CHA20-AR-00781.pdf
accesso aperto
Descrizione: Articolo principale post referee
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri |
Chaos 20.pdf
Open Access dal 02/12/2021
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.6 MB
Formato
Adobe PDF
|
1.6 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2854366