The replacement of conventional synchronous generators with converter-interfaced generation units calls for increased amounts of flexibility. This paper proposes a novel formulation of the security-constrained unit commitment (SCUC) model applied to a multi-area power system connected via High Voltage Direct Current (HVDC) links. From a system perspective, this paper provides a critical analysis of the synergies and differences between the exploitation of thermostatic loads and HVDC links when providing different layers of flexibility to the system. The former units operate within a local dimension, while the latter enable cross-border exchange of flexibility. Eight different ancillary services are modelled to tackle generation/load outages and uncertainty/variability in renewable energy output. The model is applied to the Great Britain network, which is connected to the Irish network and to the one in Continental Europe. Results suggest a critical review of the operation of future low-carbon HVDC-interconnected systems. Feasibility studies on the benefit for interconnection should no longer neglect considerations on local post-fault frequency dynamics in each area of the system. Then, fundamental changes to the mechanisms that price ancillary services become necessary in order to align these mechanisms with the technical needs of the system.

Flexible operation of low-inertia power systems connected via high voltage direct current interconnectors / Trovato, Vincenzo; Mazza, Andrea; Chicco, Gianfranco. - In: ELECTRIC POWER SYSTEMS RESEARCH. - ISSN 0378-7796. - ELETTRONICO. - 192:(2021), p. 106911. [10.1016/j.epsr.2020.106911]

Flexible operation of low-inertia power systems connected via high voltage direct current interconnectors

Trovato, Vincenzo;Mazza, Andrea;Chicco, Gianfranco
2021

Abstract

The replacement of conventional synchronous generators with converter-interfaced generation units calls for increased amounts of flexibility. This paper proposes a novel formulation of the security-constrained unit commitment (SCUC) model applied to a multi-area power system connected via High Voltage Direct Current (HVDC) links. From a system perspective, this paper provides a critical analysis of the synergies and differences between the exploitation of thermostatic loads and HVDC links when providing different layers of flexibility to the system. The former units operate within a local dimension, while the latter enable cross-border exchange of flexibility. Eight different ancillary services are modelled to tackle generation/load outages and uncertainty/variability in renewable energy output. The model is applied to the Great Britain network, which is connected to the Irish network and to the one in Continental Europe. Results suggest a critical review of the operation of future low-carbon HVDC-interconnected systems. Feasibility studies on the benefit for interconnection should no longer neglect considerations on local post-fault frequency dynamics in each area of the system. Then, fundamental changes to the mechanisms that price ancillary services become necessary in order to align these mechanisms with the technical needs of the system.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0378779620307094-main.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
EPSR-S-20-00889_WEB.pdf

Open Access dal 26/10/2022

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF Visualizza/Apri
1-s2.0-S0378779620307094-main.pdf

non disponibili

Descrizione: Versione definitiva
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2854277