This paper deals with the application of clustering methods to assist the bidding zone review processes in Italy, considering the Locational Marginal Prices (LMPs) as the relevant features. A novel approach based on the definition of the input data for clustering, depending on a number of scenarios defined by the Transmission System Operator, is exploited. The problem under analysis requires additional procedures to solve the challenging issue of incorporating node connection constraints in the clustering algorithm. A dedicated procedure, based on the definition of specific functions, is then applied to develop customised versions of k-means and hierarchical clustering. The customised procedures implemented can identify both wide clusters and outliers, whose location depends on the assessed scenarios.

Model-based Identification of Alternative Bidding Zone Configurations from Clustering Algorithms Applied on Locational Marginal Prices / Colella, P.; Mazza, A.; Bompard, E.; Chicco, G.; Russo, A.; Carlini, E. M.; Caprabianca, M.; Quaglia, F.; Luzi, L.; Nuzzo, G.. - ELETTRONICO. - (2020), pp. 1-6. (Intervento presentato al convegno 55th International Universities Power Engineering Conference, UPEC 2020 tenutosi a ita nel 2020) [10.1109/UPEC49904.2020.9209798].

Model-based Identification of Alternative Bidding Zone Configurations from Clustering Algorithms Applied on Locational Marginal Prices

Colella P.;Mazza A.;Bompard E.;Chicco G.;Russo A.;
2020

Abstract

This paper deals with the application of clustering methods to assist the bidding zone review processes in Italy, considering the Locational Marginal Prices (LMPs) as the relevant features. A novel approach based on the definition of the input data for clustering, depending on a number of scenarios defined by the Transmission System Operator, is exploited. The problem under analysis requires additional procedures to solve the challenging issue of incorporating node connection constraints in the clustering algorithm. A dedicated procedure, based on the definition of specific functions, is then applied to develop customised versions of k-means and hierarchical clustering. The customised procedures implemented can identify both wide clusters and outliers, whose location depends on the assessed scenarios.
2020
978-1-7281-1078-3
File in questo prodotto:
File Dimensione Formato  
09209798.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 508.48 kB
Formato Adobe PDF
508.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
UPEC_2020_POLITO_CLUSTERING_WEB.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 985.76 kB
Formato Adobe PDF
985.76 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2854268