Recently, Blanco-Chacón proved the equivalence between the Ring Learning With Errors and Polynomial Learning With Errors problems for some families of cyclotomic number fields by giving some upper bounds for the condition number Cond(Vn) of the Vandermonde matrix Vn associated to the nth cyclotomic polynomial. We prove some results on the singular values of Vn and, in particular, we determine Cond(Vn) for n = 2kpℓ, where k, ℓ ≥ 0 are integers and p is an odd prime number.

On the condition number of the Vandermonde matrix of the nth cyclotomic polynomial / Di Scala, Antonio J.; Sanna, Carlo; Signorini, Edoardo. - In: JOURNAL OF MATHEMATICAL CRYPTOLOGY. - ISSN 1862-2976. - STAMPA. - 15:1(2021), pp. 174-178. [10.1515/jmc-2020-0009]

On the condition number of the Vandermonde matrix of the nth cyclotomic polynomial

Antonio J. Di Scala;Carlo Sanna;Edoardo Signorini
2021

Abstract

Recently, Blanco-Chacón proved the equivalence between the Ring Learning With Errors and Polynomial Learning With Errors problems for some families of cyclotomic number fields by giving some upper bounds for the condition number Cond(Vn) of the Vandermonde matrix Vn associated to the nth cyclotomic polynomial. We prove some results on the singular values of Vn and, in particular, we determine Cond(Vn) for n = 2kpℓ, where k, ℓ ≥ 0 are integers and p is an odd prime number.
File in questo prodotto:
File Dimensione Formato  
On the condition number of the Vandermonde matrix of the nth cyclotomic polynomial.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 406.63 kB
Formato Adobe PDF
406.63 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2854092