In this paper, we study 5G Channel State Information feedback reporting. We show that a Deep Learning approach based on Convolutional Neural Networks can be used to learn efficient encoding and decoding algorithms. We set up a fully compliant link level 5G-New Radio simulator with clustered delay line channel model and we consider a realistic scenario with multiple transmitting/receiving antenna schemes and noisy downlink channel estimation. Results show that our Deep Learning approach achieves results comparable with traditional methods and can also outperform them in some conditions.

A Novel Deep Learning Approach to CSI Feedback Reporting for NR 5G Cellular Systems / Zimaglia, Elisa; Riviello, Daniel G.; Garello, Roberto; Fantini, Roberto. - ELETTRONICO. - (2020), pp. 47-52. (Intervento presentato al convegno 2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW) tenutosi a Riga, Latvia nel October 2020) [10.1109/MTTW51045.2020.9245055].

A Novel Deep Learning Approach to CSI Feedback Reporting for NR 5G Cellular Systems

Riviello, Daniel G.;Garello, Roberto;
2020

Abstract

In this paper, we study 5G Channel State Information feedback reporting. We show that a Deep Learning approach based on Convolutional Neural Networks can be used to learn efficient encoding and decoding algorithms. We set up a fully compliant link level 5G-New Radio simulator with clustered delay line channel model and we consider a realistic scenario with multiple transmitting/receiving antenna schemes and noisy downlink channel estimation. Results show that our Deep Learning approach achieves results comparable with traditional methods and can also outperform them in some conditions.
2020
978-1-7281-9398-4
File in questo prodotto:
File Dimensione Formato  
paper.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 834.32 kB
Formato Adobe PDF
834.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
paper2.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2854076