The organic waste management is a most current topic, because its processing and degradation it is responsible for emissions of methane and other greenhouse gases, leading to serious environmental problems. Limited oxygen thermochemical processes, such as pyrolysis or gasification, have demonstrated the energy recovery potential of the treated biomass and its environmental benefits. However, the solid part of the process -Biochar- it is considered as a waste, as only its coarse ash can be used as soil improvers. Nevertheless, several researchers have explored its potential application as green filler in order to reduce the carbon footprint both of cement production and cement-based construction materials. In this work, Biochar microparticles were used both as a filler inside the cement paste and mortar composites and as a substitute for the cement powder inside the mixes. Based on previous work, this investigation has a twofold objective: To understand the full influence of the use of an optimized percentage of Biochar (2% with respect to the weight of the cement) either as a filler in the mixture or as a substitute for cement, while guaranteeing an improvement in the strength without losing ductility. The results showed that 2 wt% of Biochar's particles are sufficient to increase the strength and toughness of the cement and mortar composites and, in place of the cement in the mixture, can maintain the mechanical properties equal to those of the reference samples.

The use of Biochar to reduce the carbon footprint of cement-based / Suarez-Riera, D.; Restuccia, L.; Ferro, G. A.. - In: PROCEDIA STRUCTURAL INTEGRITY. - ISSN 2452-3216. - 26:(2020), pp. 199-210. (Intervento presentato al convegno 1st Mediterranean Conference on Fracture and Structural Integrity, MedFract 2020 tenutosi a Athens (GR) nel 2020) [10.1016/j.prostr.2020.06.023].

The use of Biochar to reduce the carbon footprint of cement-based

Suarez-Riera D.;Restuccia L.;Ferro G. A.
2020

Abstract

The organic waste management is a most current topic, because its processing and degradation it is responsible for emissions of methane and other greenhouse gases, leading to serious environmental problems. Limited oxygen thermochemical processes, such as pyrolysis or gasification, have demonstrated the energy recovery potential of the treated biomass and its environmental benefits. However, the solid part of the process -Biochar- it is considered as a waste, as only its coarse ash can be used as soil improvers. Nevertheless, several researchers have explored its potential application as green filler in order to reduce the carbon footprint both of cement production and cement-based construction materials. In this work, Biochar microparticles were used both as a filler inside the cement paste and mortar composites and as a substitute for the cement powder inside the mixes. Based on previous work, this investigation has a twofold objective: To understand the full influence of the use of an optimized percentage of Biochar (2% with respect to the weight of the cement) either as a filler in the mixture or as a substitute for cement, while guaranteeing an improvement in the strength without losing ductility. The results showed that 2 wt% of Biochar's particles are sufficient to increase the strength and toughness of the cement and mortar composites and, in place of the cement in the mixture, can maintain the mechanical properties equal to those of the reference samples.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2452321620304315-main.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 906.65 kB
Formato Adobe PDF
906.65 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2853704