We propose machine learning technique for assessment of QoT impairments of integrated circuits. We consider margin reduction problem applied to a switching component. Overall results and data sets for machine-learning training are obtained by leveraging the integrated software environment of the Synopsys Photonic Design Suite.
Effectiveness of Machine Learning in Assessing QoT Impairments of Photonics Integrated Circuits to Reduce System Margin / Khan, Ihtesham; Chalony, Maryvonne; Ghillino, Enrico; Masood, Muhammad Umar; Patel, Jigesh; Richards, Dwight; Mena, Pablo; Bardella, Paolo; Carena, Andrea; Curri, Vittorio. - ELETTRONICO. - (2020), pp. 1-2. ((Intervento presentato al convegno IEEE Photonics Conference (IPC) tenutosi a CANADA [10.1109/IPC47351.2020.9252247].
Titolo: | Effectiveness of Machine Learning in Assessing QoT Impairments of Photonics Integrated Circuits to Reduce System Margin | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Abstract: | We propose machine learning technique for assessment of QoT impairments of integrated circuits. W...e consider margin reduction problem applied to a switching component. Overall results and data sets for machine-learning training are obtained by leveraging the integrated software environment of the Synopsys Photonic Design Suite. | |
ISBN: | 978-1-7281-5891-4 | |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
IPCIEEE.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia | |
IPCV2.pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2853144