In reinforced concrete (RC) multi-storey buildings, the important role of the seismic interaction of structural frames with masonry infills has been revealed by several earthquakes and investigated by many authors. Recently, several innovative infill solutions have been proposed to mitigate such interaction, which could result in widespread damage in both the masonry and the RC structure and sometimes jeopardize the building stability and the occupants' safety. One solution consists in the partitioning of the masonry infill into several sub-panels, relatively sliding along specific joints. This paper investigates the seismic assessment of this technological solution in the framework of performance based earthquake engineering. A two-dimensional five-storey RC seismic-resistant frame is selected as case study and the performance is assessed by comparing the responses of the same structure infilled with different solutions, made of sliding joints or traditional masonry, or in the bare configuration. Incremental Dynamic Analyses (IDA) is used for the probabilistic determination of fragility curves of the structures. Results show the seismic fragility and reliability of the different investigated structures, especially addressing the probabilities of occurrence of damage at different limit states and quantifying the associated expected annual loss.

Traditional vs. sliding-joint masonry infilled frames: Seismic reliability and EAL / Di Trapani, F.; Bolis, V.; Basone, F.; Cavaleri, L.; Preti, M.. - In: PROCEDIA STRUCTURAL INTEGRITY. - ISSN 2452-3216. - ELETTRONICO. - 26:(2020), pp. 383-392. (Intervento presentato al convegno 1st Mediterranean Conference on Fracture and Structural Integrity, MedFract 2020 tenutosi a grc nel 2020) [10.1016/j.prostr.2020.06.049].

Traditional vs. sliding-joint masonry infilled frames: Seismic reliability and EAL

Di Trapani F.;Cavaleri L.;
2020

Abstract

In reinforced concrete (RC) multi-storey buildings, the important role of the seismic interaction of structural frames with masonry infills has been revealed by several earthquakes and investigated by many authors. Recently, several innovative infill solutions have been proposed to mitigate such interaction, which could result in widespread damage in both the masonry and the RC structure and sometimes jeopardize the building stability and the occupants' safety. One solution consists in the partitioning of the masonry infill into several sub-panels, relatively sliding along specific joints. This paper investigates the seismic assessment of this technological solution in the framework of performance based earthquake engineering. A two-dimensional five-storey RC seismic-resistant frame is selected as case study and the performance is assessed by comparing the responses of the same structure infilled with different solutions, made of sliding joints or traditional masonry, or in the bare configuration. Incremental Dynamic Analyses (IDA) is used for the probabilistic determination of fragility curves of the structures. Results show the seismic fragility and reliability of the different investigated structures, especially addressing the probabilities of occurrence of damage at different limit states and quantifying the associated expected annual loss.
File in questo prodotto:
File Dimensione Formato  
34. Structural integrity infills.pdf

accesso aperto

Descrizione: articolo
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 4.24 MB
Formato Adobe PDF
4.24 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2851247