Mobile Mapping Systems (MMS) are multi-sensor technologies based on SLAM procedure, which provides accurate 3D measurement and mapping of the environment as also trajectory estimation for autonomous navigation. The major limits of these algorithms are the navigation and mapping inconsistence over the time and the georeferencing of the products. These issues are particularly relevant for pose estimation regardless the environment like in seamless navigation. This paper is a preliminary analysis on a proposed multi-sensor platform integrated for indoor/outdoor seamless positioning system. In particular the work is devoted to analyze the performances of the MMS in term of positioning accuracy and to evaluate its improvement with the integration of GNSS and UWB technology. The results show that, if the GNSS and UWB signal are not degraded, using the correct weight to their observations in the Stencil estimation algorithm, is possible to obtain an improvement in the accuracy of the MMS navigation solution as also in the global consistency of the final point cloud. This improvement is measured in about 7 cm for planimetric coordinate and 34 cm along the elevation with respect to the use of the Stencil system alone.

Characterization of a mobile mapping system for seamless navigation / DI Pietra, V.; Grasso, N.; Piras, M.; Dabove, P.. - In: INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES. - ISSN 1682-1750. - 43:(2020), pp. 227-234. (Intervento presentato al convegno 2020 24th ISPRS Congress - Technical Commission I tenutosi a Nice (France) nel 2020) [10.5194/isprs-archives-XLIII-B1-2020-227-2020].

Characterization of a mobile mapping system for seamless navigation

DI Pietra V.;Grasso N.;Piras M.;Dabove P.
2020

Abstract

Mobile Mapping Systems (MMS) are multi-sensor technologies based on SLAM procedure, which provides accurate 3D measurement and mapping of the environment as also trajectory estimation for autonomous navigation. The major limits of these algorithms are the navigation and mapping inconsistence over the time and the georeferencing of the products. These issues are particularly relevant for pose estimation regardless the environment like in seamless navigation. This paper is a preliminary analysis on a proposed multi-sensor platform integrated for indoor/outdoor seamless positioning system. In particular the work is devoted to analyze the performances of the MMS in term of positioning accuracy and to evaluate its improvement with the integration of GNSS and UWB technology. The results show that, if the GNSS and UWB signal are not degraded, using the correct weight to their observations in the Stencil estimation algorithm, is possible to obtain an improvement in the accuracy of the MMS navigation solution as also in the global consistency of the final point cloud. This improvement is measured in about 7 cm for planimetric coordinate and 34 cm along the elevation with respect to the use of the Stencil system alone.
File in questo prodotto:
File Dimensione Formato  
isprs-archives-XLIII-B1-2020-227-2020.pdf

accesso aperto

Descrizione: Post-print_proceeding
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2850798