Enabling green fabrication processes for energy storage devices is becoming a key aspect in order to achieve a sustainable fabrication cycle. Here we focus on the exploitation of the tragacanth gum, an exudated gum like arabic and karaya gums, as green binder for the preparation of carbon-based for electrochemical capacitors. The electrochemical performance of tragacanth (TRGC)-based electrodes are thoroughly investigated and compared with another water-soluble binder largely used in this field, i.e. sodium-carboxymethyl cellulose (CMC). Apart from the higher sustainability both in production and processing, TRGC exhibits a lower impact on the obstruction of pores in the final active material film with respect to CMC, allowing for more available surface area. This directly impacts on the electrochemical performances resulting in a higher specific capacitance and better rate capability. Moreover, the TRGC-based supercapacitor shows a superior thermal stability than CMC with a capacity retention of about 80 % after 10.000 cycles at 70 °C.
Tragacanth gum as green binder for sustainable water-processable electrochemical capacitor / Scalia, Alberto; Zaccagnini, Pietro; Armandi, Marco; Latini, Giulio; Versaci, Daniele; Lanzio, Vittorino; Varzi, Alberto; Passerini, Stefano; Lamberti, Andrea. - In: CHEMSUSCHEM. - ISSN 1864-5631. - 14:(2021), pp. 356-362. [10.1002/cssc.202001754]
Tragacanth gum as green binder for sustainable water-processable electrochemical capacitor
Scalia, Alberto;Zaccagnini, Pietro;Armandi, Marco;Latini, Giulio;Versaci, Daniele;Lanzio, Vittorino;Lamberti, Andrea
2021
Abstract
Enabling green fabrication processes for energy storage devices is becoming a key aspect in order to achieve a sustainable fabrication cycle. Here we focus on the exploitation of the tragacanth gum, an exudated gum like arabic and karaya gums, as green binder for the preparation of carbon-based for electrochemical capacitors. The electrochemical performance of tragacanth (TRGC)-based electrodes are thoroughly investigated and compared with another water-soluble binder largely used in this field, i.e. sodium-carboxymethyl cellulose (CMC). Apart from the higher sustainability both in production and processing, TRGC exhibits a lower impact on the obstruction of pores in the final active material film with respect to CMC, allowing for more available surface area. This directly impacts on the electrochemical performances resulting in a higher specific capacitance and better rate capability. Moreover, the TRGC-based supercapacitor shows a superior thermal stability than CMC with a capacity retention of about 80 % after 10.000 cycles at 70 °C.File | Dimensione | Formato | |
---|---|---|---|
cssc.202001754.pdf
accesso riservato
Descrizione: Preprint Articolo
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.72 MB
Formato
Adobe PDF
|
1.72 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
cssc.202001754.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2850113