This paper introduces a simple and effective algorithm for the automated selection of Radial Basis Function hyperparameters in the context of high-dimensional multivariate macromodeling. Numerical results show an average speedup of at least one order of magnitude with respect to direct hyperparameter optimization.

Hyperparameter determination in multivariate macromodeling based on radial basis functions / Zanco, Alessandro; Grivet-Talocia, Stefano. - ELETTRONICO. - (2020), pp. 1-3. (Intervento presentato al convegno 2020 IEEE 29th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS) tenutosi a San Jose, CA, USA nel 5-7 Oct. 2020) [10.1109/EPEPS48591.2020.9231376].

Hyperparameter determination in multivariate macromodeling based on radial basis functions

Zanco, Alessandro;Grivet-Talocia, Stefano
2020

Abstract

This paper introduces a simple and effective algorithm for the automated selection of Radial Basis Function hyperparameters in the context of high-dimensional multivariate macromodeling. Numerical results show an average speedup of at least one order of magnitude with respect to direct hyperparameter optimization.
2020
978-1-7281-6161-7
File in questo prodotto:
File Dimensione Formato  
cnf-2020-epeps-rbf-ieee.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 454.78 kB
Formato Adobe PDF
454.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
cnf-2020-epep-shape-par.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 449.02 kB
Formato Adobe PDF
449.02 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2850028