This paper introduces a simple and effective algorithm for the automated selection of Radial Basis Function hyperparameters in the context of high-dimensional multivariate macromodeling. Numerical results show an average speedup of at least one order of magnitude with respect to direct hyperparameter optimization.
Hyperparameter determination in multivariate macromodeling based on radial basis functions / Zanco, Alessandro; Grivet-Talocia, Stefano. - ELETTRONICO. - (2020), pp. 1-3. (Intervento presentato al convegno 2020 IEEE 29th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS) tenutosi a San Jose, CA, USA nel 5-7 Oct. 2020) [10.1109/EPEPS48591.2020.9231376].
Hyperparameter determination in multivariate macromodeling based on radial basis functions
Zanco, Alessandro;Grivet-Talocia, Stefano
2020
Abstract
This paper introduces a simple and effective algorithm for the automated selection of Radial Basis Function hyperparameters in the context of high-dimensional multivariate macromodeling. Numerical results show an average speedup of at least one order of magnitude with respect to direct hyperparameter optimization.File | Dimensione | Formato | |
---|---|---|---|
cnf-2020-epeps-rbf-ieee.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
454.78 kB
Formato
Adobe PDF
|
454.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
cnf-2020-epep-shape-par.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
449.02 kB
Formato
Adobe PDF
|
449.02 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2850028