This paper introduces a simple and effective algorithm for the automated selection of Radial Basis Function hyperparameters in the context of high-dimensional multivariate macromodeling. Numerical results show an average speedup of at least one order of magnitude with respect to direct hyperparameter optimization.
Hyperparameter determination in multivariate macromodeling based on radial basis functions / Zanco, Alessandro; Grivet-Talocia, Stefano. - ELETTRONICO. - (2020), pp. 1-3. (Intervento presentato al convegno 2020 IEEE 29th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS) tenutosi a San Jose, CA, USA nel 5-7 Oct. 2020) [10.1109/EPEPS48591.2020.9231376].
Hyperparameter determination in multivariate macromodeling based on radial basis functions
Zanco, Alessandro;Grivet-Talocia, Stefano
2020
Abstract
This paper introduces a simple and effective algorithm for the automated selection of Radial Basis Function hyperparameters in the context of high-dimensional multivariate macromodeling. Numerical results show an average speedup of at least one order of magnitude with respect to direct hyperparameter optimization.| File | Dimensione | Formato | |
|---|---|---|---|
| cnf-2020-epeps-rbf-ieee.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										454.78 kB
									 
										Formato
										Adobe PDF
									 | 454.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| cnf-2020-epep-shape-par.pdf accesso aperto 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										449.02 kB
									 
										Formato
										Adobe PDF
									 | 449.02 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2850028
			
		
	
	
	
			      	