This paper introduces a simple and effective algorithm for the automated selection of Radial Basis Function hyperparameters in the context of high-dimensional multivariate macromodeling. Numerical results show an average speedup of at least one order of magnitude with respect to direct hyperparameter optimization.
Hyperparameter determination in multivariate macromodeling based on radial basis functions / Zanco, Alessandro; Grivet-Talocia, Stefano. - ELETTRONICO. - (2020), pp. 1-3. ((Intervento presentato al convegno 2020 IEEE 29th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS) tenutosi a San Jose, CA, USA nel 5-7 Oct. 2020 [10.1109/EPEPS48591.2020.9231376].
Titolo: | Hyperparameter determination in multivariate macromodeling based on radial basis functions | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Abstract: | This paper introduces a simple and effective algorithm for the automated selection of Radial Basi...s Function hyperparameters in the context of high-dimensional multivariate macromodeling. Numerical results show an average speedup of at least one order of magnitude with respect to direct hyperparameter optimization. | |
ISBN: | 978-1-7281-6161-7 | |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
cnf-2020-epeps-rbf-ieee.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia | |
cnf-2020-epep-shape-par.pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2850028