We study the behaviour of two different measures of the complexity of multipartite correlation patterns, weaving and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite correlations of any order, where the weights are proportional to the correlation order. The neural complexity, originally introduced to characterize correlation patterns in classical neural networks, is here extended to the quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise.
Weaving and neural complexity in symmetric quantum states / Susa, C. E.; Girolami, D.. - In: OPTICS COMMUNICATIONS. - ISSN 0030-4018. - 413(2018), pp. 157-161.
Titolo: | Weaving and neural complexity in symmetric quantum states |
Autori: | |
Data di pubblicazione: | 2018 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.optcom.2017.12.050 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
1-s2.0-S0030401817311719-main.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2849567