Let S^3 be the unit 3-sphere with its standard Cauchy--Riemann (CR) structure induced from C^2. This paper investigates the CR geometry of curves in S^3 transversal to the contact distribution using the local CR invariants of S^3 thought of as a 3-dimensional CR manifold. More specifically, the focus is on the CR geometry of transversal knots in the 3-sphere. Four global invariants of transversal knots are considered: the phase anomaly, the pseudoconformal spin, the Maslov index, and the Cauchy--Riemann self-linking number. The relations between these invariants and the Bennequin number of a knot are discussed. Next, the simplest CR invariant variational problem for generic transversal curves, the CR strain functional, is considered and its closed critical curves are studied.
On the Cauchy-Riemann Geometry of Transversal Curves in the 3-Sphere / Musso, Emilio; Nicolodi, Lorenzo; Salis, Filippo. - In: ŽURNAL MATEMATIčESKOJ FIZIKI, ANALIZA, GEOMETRII. - ISSN 1812-9471. - ELETTRONICO. - 16:3(2020), pp. 312-363. [10.15407/mag16.03.312]
On the Cauchy-Riemann Geometry of Transversal Curves in the 3-Sphere
Emilio Musso;and Filippo Salis
2020
Abstract
Let S^3 be the unit 3-sphere with its standard Cauchy--Riemann (CR) structure induced from C^2. This paper investigates the CR geometry of curves in S^3 transversal to the contact distribution using the local CR invariants of S^3 thought of as a 3-dimensional CR manifold. More specifically, the focus is on the CR geometry of transversal knots in the 3-sphere. Four global invariants of transversal knots are considered: the phase anomaly, the pseudoconformal spin, the Maslov index, and the Cauchy--Riemann self-linking number. The relations between these invariants and the Bennequin number of a knot are discussed. Next, the simplest CR invariant variational problem for generic transversal curves, the CR strain functional, is considered and its closed critical curves are studied.File | Dimensione | Formato | |
---|---|---|---|
TransversalCurvesJMPAG copia.pdf
accesso aperto
Descrizione: Author's accepted Manuscript
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
3.9 MB
Formato
Adobe PDF
|
3.9 MB | Adobe PDF | Visualizza/Apri |
jm16-0312e copia 2.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.72 MB
Formato
Adobe PDF
|
2.72 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2849192