Let S^3 be the unit 3-sphere with its standard Cauchy--Riemann (CR) structure induced from C^2. This paper investigates the CR geometry of curves in S^3 transversal to the contact distribution using the local CR invariants of S^3 thought of as a 3-dimensional CR manifold. More specifically, the focus is on the CR geometry of transversal knots in the 3-sphere. Four global invariants of transversal knots are considered: the phase anomaly, the pseudoconformal spin, the Maslov index, and the Cauchy--Riemann self-linking number. The relations between these invariants and the Bennequin number of a knot are discussed. Next, the simplest CR invariant variational problem for generic transversal curves, the CR strain functional, is considered and its closed critical curves are studied.

On the Cauchy-Riemann Geometry of Transversal Curves in the 3-Sphere / Musso, Emilio; Nicolodi, Lorenzo; Salis, Filippo. - In: ŽURNAL MATEMATIčESKOJ FIZIKI, ANALIZA, GEOMETRII. - ISSN 1812-9471. - ELETTRONICO. - 16:3(2020), pp. 312-363. [10.15407/mag16.03.312]

On the Cauchy-Riemann Geometry of Transversal Curves in the 3-Sphere

Emilio Musso;and Filippo Salis
2020

Abstract

Let S^3 be the unit 3-sphere with its standard Cauchy--Riemann (CR) structure induced from C^2. This paper investigates the CR geometry of curves in S^3 transversal to the contact distribution using the local CR invariants of S^3 thought of as a 3-dimensional CR manifold. More specifically, the focus is on the CR geometry of transversal knots in the 3-sphere. Four global invariants of transversal knots are considered: the phase anomaly, the pseudoconformal spin, the Maslov index, and the Cauchy--Riemann self-linking number. The relations between these invariants and the Bennequin number of a knot are discussed. Next, the simplest CR invariant variational problem for generic transversal curves, the CR strain functional, is considered and its closed critical curves are studied.
File in questo prodotto:
File Dimensione Formato  
TransversalCurvesJMPAG copia.pdf

accesso aperto

Descrizione: Author's accepted Manuscript
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 3.9 MB
Formato Adobe PDF
3.9 MB Adobe PDF Visualizza/Apri
jm16-0312e copia 2.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.72 MB
Formato Adobe PDF
2.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2849192