The process of manufacturing pultruded FRP (Fiber Reinforced Polymers) profiles involves unavoidable imperfections that affect their structural performances. This is is even more relevant for the stability of axially loaded slender elements, due to the importance of imperfections and notches to initiate the buckling phenomenon. Thus, they become a predominant factor for the design of lightweight FRP beam-like structures. A Bayesian approach is proposed to estimate the presence and location of manufacturing imperfections in pultruded GFRPs (Glass Fiber Reinforced Polymers) profiles. Specifically, the Treed Gaussian Process (TGP) procedure is applied. This approach combines regression Gaussian Processes (GP) and Bayesian-based Recursive Partitioning. The experimental and numerical modal shapes of wide flange pultruded profile were investigated. The experimental data were compared with the numerical results of several Finite Element Models (FEM) characterised by different crack sizes.

Treed gaussian process for manufacturing imperfection identification of pultruded GFRP thin-walled profile / Civera, M.; Boscato, G.; Zanotti Fragonara, L.. - In: COMPOSITE STRUCTURES. - ISSN 0263-8223. - 254:(2020), pp. 1-17. [10.1016/j.compstruct.2020.112882]

Treed gaussian process for manufacturing imperfection identification of pultruded GFRP thin-walled profile

Civera M.;Zanotti Fragonara L.
2020

Abstract

The process of manufacturing pultruded FRP (Fiber Reinforced Polymers) profiles involves unavoidable imperfections that affect their structural performances. This is is even more relevant for the stability of axially loaded slender elements, due to the importance of imperfections and notches to initiate the buckling phenomenon. Thus, they become a predominant factor for the design of lightweight FRP beam-like structures. A Bayesian approach is proposed to estimate the presence and location of manufacturing imperfections in pultruded GFRPs (Glass Fiber Reinforced Polymers) profiles. Specifically, the Treed Gaussian Process (TGP) procedure is applied. This approach combines regression Gaussian Processes (GP) and Bayesian-based Recursive Partitioning. The experimental and numerical modal shapes of wide flange pultruded profile were investigated. The experimental data were compared with the numerical results of several Finite Element Models (FEM) characterised by different crack sizes.
File in questo prodotto:
File Dimensione Formato  
pre-proof_civera_boscato_zanotti_fragonara_CS_2020.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 12.26 MB
Formato Adobe PDF
12.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Treed gaussian process for manufacturing imperfection identification of pultruded GFRP thin-walled profile _ Elsevier Enhanced Reader.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 35.41 MB
Formato Adobe PDF
35.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2849008