The paper concerns with positive solutions of problems of the type -Δu+a(x)u=up-1+εu2∗-1 in Ω ⊆ RN, N≥ 3 , 2∗=2NN-2, 2 < p< 2 ∗. Here Ω can be an exterior domain, i.e. RN Ω is bounded, or the whole of RN. The potential a∈LlocN/2(RN) is assumed to be strictly positive and such that there exists lim |x|→∞a(x) : = a∞> 0. First, some existence results of ground state solutions are proved. Then the case a(x) ≥ a∞ is considered, with a(x) ≢ a∞ or Ω ≠ RN. In such a case, no ground state solution exists and the existence of a bound state solution is proved, for small ε.

Positive solutions for autonomous and non-autonomous nonlinear critical elliptic problems in unbounded domains / Lancelotti, S.; Molle, R.. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 27:1(2020). [10.1007/s00030-019-0611-5]

Positive solutions for autonomous and non-autonomous nonlinear critical elliptic problems in unbounded domains

Lancelotti S.;
2020

Abstract

The paper concerns with positive solutions of problems of the type -Δu+a(x)u=up-1+εu2∗-1 in Ω ⊆ RN, N≥ 3 , 2∗=2NN-2, 2 < p< 2 ∗. Here Ω can be an exterior domain, i.e. RN Ω is bounded, or the whole of RN. The potential a∈LlocN/2(RN) is assumed to be strictly positive and such that there exists lim |x|→∞a(x) : = a∞> 0. First, some existence results of ground state solutions are proved. Then the case a(x) ≥ a∞ is considered, with a(x) ≢ a∞ or Ω ≠ RN. In such a case, no ground state solution exists and the existence of a bound state solution is proved, for small ε.
File in questo prodotto:
File Dimensione Formato  
Lancelotti_et_al-2020-Nonlinear_Differential_Equations_and_Applications_NoDEA.pdf

accesso riservato

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 514.12 kB
Formato Adobe PDF
514.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Lancelotti_et_al_2020.pdf

Open Access dal 05/01/2021

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 498.92 kB
Formato Adobe PDF
498.92 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2848166