The aim of the article is to study the stability of a non-local kinetic model proposed in [17], that is a kinetic model for cell migration taking into account the non-local sensing performed by a cell in order to decide its direction and speed of movement. We show that pattern formation results from modulation of one non-dimensional parameter that depends on the tumbling frequency, the sensing radius, the mean speed in a given direction, the uniform configuration density and the tactic response to the cell density. Numerical simulations show that our linear stability analysis predicts quite precisely the ranges of parameters determining instability and pattern formation. We also extend the stability analysis to the case of different mean speeds in different directions.

Stability of a non-local kinetic model for cell migration with density dependent orientation bias / Loy, Nadia; Preziosi, Luigi. - In: KINETIC AND RELATED MODELS. - ISSN 1937-5093. - 13:5(2020), pp. 1007-1027. [10.3934/KRM.2020035]

Stability of a non-local kinetic model for cell migration with density dependent orientation bias

Loy, Nadia;Preziosi, Luigi
2020

Abstract

The aim of the article is to study the stability of a non-local kinetic model proposed in [17], that is a kinetic model for cell migration taking into account the non-local sensing performed by a cell in order to decide its direction and speed of movement. We show that pattern formation results from modulation of one non-dimensional parameter that depends on the tumbling frequency, the sensing radius, the mean speed in a given direction, the uniform configuration density and the tactic response to the cell density. Numerical simulations show that our linear stability analysis predicts quite precisely the ranges of parameters determining instability and pattern formation. We also extend the stability analysis to the case of different mean speeds in different directions.
File in questo prodotto:
File Dimensione Formato  
Stability_Loy_KRM.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri
2561019.pdf

non disponibili

Descrizione: articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 5.89 MB
Formato Adobe PDF
5.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2846995