In virtual modelling of exoskeletons, the human-exoskeleton interface is often simplified by modelling the interface forces at a single point instead of contact forces due to the straps or cuffs. In the past, force-generating elements (FGEs) have been used to predict ground reaction forces. However, unlike the ground, which is a planar surface, the human-exoskeleton interface presents curved surfaces. This work discusses the modifications required for using the FGEs for predicting the curved human-exoskeleton interface forces of a passive lower-limb exoskeleton, the Chairless Chair. A pressure mat was positioned at the human-exoskeleton interface to measure the area of contact and the centre of pressure (CoP) in three different sitting conditions. The strength of the FGEs was analysed in detail and its optimization based on the model outputs is discussed. The strength affects the model assistance and the CoP, and these outputs could be used to identify the optimal value of the strength. The strength of the FGEs affects the biomechanical outputs from the model also. Therefore, it is crucial to select the correct value of the strength. The results of this work would be useful for the detailed modelling of the human-exoskeleton interface.

Modelling interaction forces at a curved physical human-exoskeleton interface / Chander, D. S.; Cavatorta, M. P.. - ELETTRONICO. - 11:(2020), pp. 217-226. (Intervento presentato al convegno 6th International Digital Human Modeling Symposium, DHM 2020 tenutosi a ASSAR Industrial Innovation Arena, Skovde, Sweden; Online nel 2020) [10.3233/ATDE200028].

Modelling interaction forces at a curved physical human-exoskeleton interface

Chander D. S.;Cavatorta M. P.
2020

Abstract

In virtual modelling of exoskeletons, the human-exoskeleton interface is often simplified by modelling the interface forces at a single point instead of contact forces due to the straps or cuffs. In the past, force-generating elements (FGEs) have been used to predict ground reaction forces. However, unlike the ground, which is a planar surface, the human-exoskeleton interface presents curved surfaces. This work discusses the modifications required for using the FGEs for predicting the curved human-exoskeleton interface forces of a passive lower-limb exoskeleton, the Chairless Chair. A pressure mat was positioned at the human-exoskeleton interface to measure the area of contact and the centre of pressure (CoP) in three different sitting conditions. The strength of the FGEs was analysed in detail and its optimization based on the model outputs is discussed. The strength affects the model assistance and the CoP, and these outputs could be used to identify the optimal value of the strength. The strength of the FGEs affects the biomechanical outputs from the model also. Therefore, it is crucial to select the correct value of the strength. The results of this work would be useful for the detailed modelling of the human-exoskeleton interface.
2020
978-1-64368-104-7
978-1-64368-105-4
File in questo prodotto:
File Dimensione Formato  
Chander 2020 Modelling Interaction Forces at a Curved Physical Hum-Exo Interface.pdf

accesso aperto

Descrizione: Main Article
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2846770