A wide range of highly-relevant problems in programmable and integrated photonics, optical amplification, and communication deal with inverse system design. Typically, a desired output (usually a gain profile, a noise profile, a transfer function or a similar continuous function) is given and the goal is to determine the corresponding set of input parameters (usually a set of input voltages, currents, powers, and wavelengths). We present a novel method for inverse system design using machine learning and apply it to Raman amplifier design. Inverse system design for Raman amplifiers consists of selecting pump powers and wavelengths that would result in a targeted gain profile. This is a challenging task due to highly-complex interaction between pumps and Raman gain. Using the proposed framework, highly-accurate predictions of the pumping setup for arbitrary Raman gain profiles are demonstrated numerically in C and C+L-band, as well as experimentally in C band, for the first time. A low mean (0.46 and 0.35 dB) and standard deviation (0.20 and 0.17 dB) of the maximum error are obtained for numerical (C+L-band) and experimental (C-band) results, respectively, when employing 4 pumps and 100 km span length. The presented framework is general and can be applied to other inverse problems in optical communication and photonics in general.
Inverse System Design Using Machine Learning: The Raman Amplifier Case / Zibar, D.; Rosa Brusin, A. M.; De Moura, U. C.; Da Ros, F.; Curri, V.; Carena, A.. - In: JOURNAL OF LIGHTWAVE TECHNOLOGY. - ISSN 0733-8724. - 38:4(2020), pp. 736-753. [10.1109/JLT.2019.2952179]
Inverse System Design Using Machine Learning: The Raman Amplifier Case
Rosa Brusin A. M.;Curri V.;Carena A.
2020
Abstract
A wide range of highly-relevant problems in programmable and integrated photonics, optical amplification, and communication deal with inverse system design. Typically, a desired output (usually a gain profile, a noise profile, a transfer function or a similar continuous function) is given and the goal is to determine the corresponding set of input parameters (usually a set of input voltages, currents, powers, and wavelengths). We present a novel method for inverse system design using machine learning and apply it to Raman amplifier design. Inverse system design for Raman amplifiers consists of selecting pump powers and wavelengths that would result in a targeted gain profile. This is a challenging task due to highly-complex interaction between pumps and Raman gain. Using the proposed framework, highly-accurate predictions of the pumping setup for arbitrary Raman gain profiles are demonstrated numerically in C and C+L-band, as well as experimentally in C band, for the first time. A low mean (0.46 and 0.35 dB) and standard deviation (0.20 and 0.17 dB) of the maximum error are obtained for numerical (C+L-band) and experimental (C-band) results, respectively, when employing 4 pumps and 100 km span length. The presented framework is general and can be applied to other inverse problems in optical communication and photonics in general.File | Dimensione | Formato | |
---|---|---|---|
ML_based_Raman_amplifier_design___JLT_preprint.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri |
Zibar et al. - 2020 - Inverse System Design Using Machine Learning The Raman Amplifier Case.pdf
non disponibili
Descrizione: Articolo principale in versione post-print editoriale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.3 MB
Formato
Adobe PDF
|
2.3 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ML_based_Raman_amplifier_design_JLT_accepted.pdf
accesso aperto
Descrizione: Articolo principale post-print in versione accettata
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2846117