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Inverse System Design using Machine
Learning: the Raman Amplifier Case

Darko Zibar, Ann M. Rosa Brusin, Uiara C. de Moura, Francesco Da Ros, Vittorio Curri and Andrea
Carena

Abstract—A wide range of highly–relevant problems in
programmable and integrated photonics, optical amplifica-
tion and communication deal with inverse system design.
Typically, a desired output (usually a gain profile, a noise
profile, a transfer function or a similar continuous function)
is given and the goal is to determine the corresponding
set of input parameters (usually a set of input voltages,
currents, powers and wavelengths). We present a novel
method for inverse system design using machine learning
and apply it to Raman amplifier design. Inverse system
design for Raman amplifiers consists of selecting pump
powers and wavelengths that would result in a targeted gain
profile. This is a challenging task due to highly–complex
interaction between pumps and Raman gain. Using the
proposed framework, highly–accurate predictions of the
pumping setup for arbitrary Raman gain profiles are
demonstrated numerically in C and C+L–band, as well
as experimentally in C band, for the first time. A low
mean (0.46 and 0.35 dB) and standard deviation (0.20
and 0.17 dB) of the maximum error are obtained for
numerical (C+L–band) and experimental (C–band) results,
respectively, when employing 4 pumps and 100 km span
length. The presented framework is general and can be
applied to other inverse problems in optical communication
and photonics in general.

Index Terms—optical communication, optical amplifica-
tion, machine learning, inverse system design, optimization

I. INTRODUCTION

Determining a set of input parameters that would
result in a targeted output function is a problem of
general relevance to many areas in photonics ranging
from optical components and communication systems
design to network optimization [1]–[4]. Specific example
applications are:
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• in programmable photonics, a desired transfer func-
tion is given, and a set of corresponding control
voltages for the optical phase shifters need to be
selected [2], [3].

• for receiver testing in high–speed optical communi-
cation systems, distortion properties of a stress–test
signal are given and the resulting signal–generation
parameters need to be determined [5].

• in the case of photonic crystal fibres design, a
specific dispersion profile is given and the corre-
sponding fibre geometry needs to be found [6].

In this paper, we address a further application: the
inverse system design for Raman amplifiers (RA)s. This
problem is becoming increasingly important and the rea-
son is that the next–generation of optical communication
systems are envisioned to operate in O, E, S, C and L
band [7]. Designing an optical amplification scheme that
would cover all five bands is a challenging task as the
requirements on the gain spectra profile and noise figure
may be quite stringent. Compared to the well-established
Erbium Doped Fibre Amplifiers (EDFA)s, RAs offer low
noise properties due to distributed amplification, and
gain availability across a broad range of wavelengths,
when operated in multi-pump configurations. Moreover,
RAs offer a great flexibility in the gain profile design
making them an attractive solution for future ultra–
wideband optical networks.

The main challenge with Raman amplifier design is
on the selection of pump powers and wavelengths that
would result in a specific gain profile. Ideally speaking,
being able to realize an arbitrary gain profile may be
useful in many situations especially when considering
autonomous optical networks [4].

Designing a specific gain profile is in general a com-
plex optimization procedure that requires the solution of
a system of nonlinear differential equations describing
the evolution of pumps and channels along the fiber.
Several solutions to this problem have been reported
in the literature [8]–[11] and references therein. So far,
none of the solutions have been demonstrated for an
arbitrary Raman gain profile design.

The general trend of the solutions presented in [8], [9]



is to use genetic algorithms in combination with integra-
tion of propagation equations describing multi-pump and
optical Wavelength Division Multiplexed (WDM) chan-
nels interaction. This approach is cumbersome, highly
time consuming and in some cases the solution may not
converge.

A recently proposed solution in [10] employs a neural
network to learn the mapping between pump powers
and wavelengths and the gain profile (forward model).
The neural network is then used in combination with
genetic algorithms to perform the optimization. This ap-
proach avoids solving the differential equation within the
optimization routine. The authors in [10], demonstrate
their optimization method for the design of flat gain
profile only. Most importantly, the considered fiber–span
length is 25 km, where in practical applications, the span
length is typically in the vicinity of 100 km. Finally, the
proposed method needs to be run every time a new gain
profile is needed which induces non–negligible latency.
Genetic algorithms are a powerful tool but they do
rely on random optimization which has non-negligible
convergence time especially if initial conditions are not
properly set. Finally, the structure and the parameters of
the genetic algorithms need to be set according to the
problem. This can be very challenging every time a new
Raman gain profile needs to be designed.

An interesting approach was also presented in [11],
where a neural network is first used to learn the forward
model and then the gradient descent is employed in
combination with the forward model to only optimize
pump powers. This approach has been demonstrated, in
simulations, for flat gain designs and fiber–span length
of up to 5 dB and 50 km, respectively. The gradient
descent optimization is time–consuming and prone to
local minima if the initial conditions are not in the
vicinity of the solutions [12]. Therefore, an issue with
the method presented in [11] is that a set of initial
conditions close to the final solution are needed. This
requires multi–dimensional exhaustive search which is
highly complex and time consuming. Most importantly,
the aforementioned search is not very practical every
time pump allocations are needed for a new gain profile.

For the next generation of optical communication
systems, fast routing, deployment and optimization of
data traffic will be highly demanded [4], [13]. Network
automatization at low-latency will be highly desired in
the path toward autonomous and self-adaptive optical
networks [4], [13]. Therefore, ultra-fast methods for
selecting pump powers and wavelengths targeting a
specific gain profile are essential.

In this paper, we present a novel, machine learning
based approach, for inverse system design and apply

it to the Raman amplifier design. A multi-layer neural
network is employed to learn the mapping between the
gain profile and pump powers and wavelengths. Once
the model has been learned, pump powers and wave-
lengths can be predicted by a simple forward propagation
through the multi–layer neural network. To address the
problem of multi–layer neural network initialization, we
employ model averaging. We run a number of parallel
neural networks each initialized with a different seed,
drawn from a Gaussian distribution. For the final re-
sult, we then take the average of all employed neural
networks. The variance of the Gaussian distribution is
obtained through cross-validation. This approach will
make neural network performance less affected by the
weight initialization.

The proposed solution in this paper offers a high-
degree of flexibility compared to state-of-the-art methods
where for each gain profile a complex optimization
problem needs to be solved from scratch. The proposed
approach has thus high-accuracy, low complexity and it
is ultra-fast as the integration of propagation equation
is completely avoided. This makes it highly attractive
for application in network control-plane where almost
real–time adjustments can be required and a full featured
optimization process cannot take place.

To improve the accuracy of the aforementioned
method, we propose a fine–adjustment of the pump pow-
ers and wavelengths. This is achieved by employing a
gradient descent algorithm in combination with a second
multi–layer neural network, that represents the forward
mapping between the pump powers and wavelengths and
the Raman gain profile.

The proof-of-principle results, we presented in [14],
mainly focused on numerical simulations and C–band
only. This paper includes significant extensions in terms
of the method itself, as well as numerical (C+L–band)
and experimental results (C–band).

Recently, a machine learning approach for the design
of flat gain hybrid Raman–EDFA amplifier has been
demonstrated for the C+L–band [15]. The proposed
approach in [15] is able to learn the relationship between
the amplifier output power, gain tilt and the pump
powers. In contrary, the proposed framework, in this
paper, learns the relationship between the Raman gain
profile and pump powers and wavelengths, which is more
general and challenging. We are also employing deep
random projection method for learning the parameters of
the multi–layer neural network, as well as neural network
driven gradient descent for fine–adjustments. Indeed, our
system resembles auto-encoders and it is significantly
different in terms of learning algorithms and architecture
compared to the work presented in [15]. In the end,
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our framework is able to provide highly–accurate design
of any arbitrary gain profile. Particularly, in this paper,
we present for the first time numerical and experimental
demonstration of such capabilities for Raman amplifiers.

The reminder of the paper is organized as follows.
In section II, a framework for the machine learning
based inverse system design is described. The general
idea and the core algorithms are presented. In section
III, the machine learning framework is demonstrated,
using numerical simulations for C and C+L–band, for the
design of arbitrary, flat and tilted Raman gain profiles. In
section IV, experimental set–up used for the validation
is presented. The numerical and experimental results are
evaluated in terms of the maximum gain error and the
root mean square error between the targeted and the
predicted gain profiles. In section V, a brief discussion
on the speed and complexity in relation to other methods
is presented. The conclusions and the outlook of the
proposed method are presented in section VI.

II. MACHINE LEARNING FRAMEWORK

In the inverse system design, we are given a target
output Ytarg and the objective is to determine the
corresponding input Xtarg. The forward mapping is
denoted by Y = f(X) and, to determine Xtarg, the
inverse (backward) mapping function f−1(·) needs to
be determined. In many cases of interest, the forward
mapping function f(·) is highly complex and described
by a set of nonlinear differential or integral equations
that must be solved numerically. Moreover, for some
system, f(·), may even be unknown. Therefore, it is
very challenging, and in some cases impossible, to obtain
expression for the gradient and apply standard least-
squares optimization techniques to find Xtarg [16].

Throughout the entire paper both input and output
parameters are considered in their sampled version: it
is assumed that they are vectors, X = [x1, ..., xM ]T and
Y = [y1, ..., yN ]T , where T denotes transpose operator,
and M and N are the length of the input and the output
vectors, respectively.

We propose a machine learning based architecture,
shown in Fig. 1, to address the inverse system design and
determine Xtarg. A multi-layer neural network (ML–
NN) is first employed to learn the inverse mapping
f−1(·). We call this ML-NN, backward network, and
denote it as NNbw(·). As the ML–NN is a univer-
sal function approximator, the proposed approach can
theoretically learn the inverse mapping with relatively
high–accuracy, provided that the forward mapping is
unique [12]. The ML–NN relies on supervised learning
and therefore, the training data–set: DK×(N+M)

bw =

{YT
k ,X

T
k |k = 1, ...,K}, where K is the size of the

data–set, needs to be generated. To generate the train-
ing data–set, we do not need to know the functional
expression for the forward model, f(·), as we can
excite the system with a set of inputs and record the
desired outputs. This is exactly how a training data–
set is gathered for the practical implementation of the
proposed framework which is demonstrated in section
IV.

However, it may be convenient to know the functional
description of the forward model, f(·). This will allow
for numerical simulations to be performed which can
give an insight into a better understanding on the per-
formance and the limitations of the framework. These
insights can then be used for designing the experiments
and the subsequent data collection. Finally, the numerical
results may also be helpful in providing the interpretation
of the experimental data.

Presenting Yk and Xk, from the training data–set, as
the input and the output to the ML-NN, a set of weights
Wbw = [W

(1)
bw , ...,W

(Lbw)
bw ] are determined, where Lbw

is the number of the ML-NN layers (Fig. 1). The ML–
NN is then said to be trained as it has learned the
mapping between Yk and Xk. Even though ML–NN
is a universal function approximators, the ML–NN will
not provide an exact replica of mapping function f(·) or
f−1(·) but an approximation to it. In Appendix A, this
is explained in more details.

Once the training of the ML–NN has been com-
pleted, the weights Wbw are fixed. If we are then
given a target output Ytarg, the corresponding input
Xtarg is computed by the backward neural network:
Xtarg = NNbw(Y

targ). This approach offers ultra–
fast and low–complexity computation of Xtarg as the
evaluation of the backward neural network only performs
matrix multiplication on the inputs and the correspond-
ing forward propagation though the network layers. To
improve the accuracy of the inverse design achieved
with the NNbw(·), we propose a second step of fine–
optimization by applying the gradient descent algorithm
to fine–adjust Xtarg:

Xtarg(i+ 1) = Xtarg(i)− η∇e(Xtarg
i ) (1)

where i is the iteration number and η > 0 is the learning
rate. As Xtarg should already be in vicinity of the
final solution, the gradient decent does not need many
iterations to converge. The error e(Xtarg

i ) is defined as
the mean square error (MSE) between the targeted output
Ytarg and the output of the forward model f(Xtarg

i ).
However, this approach can be cumbersome and time–
consuming as the forward model f(·) needs to be run at
every iteration. Most importantly, in many cases it is not
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Fig. 1. Illustration of the machine learning based approach for the inverse system design.

possible or it is highly complex to compute the gradient
if f(·) is directly used.

Instead of running the forward model f(·) within
each iteration of the gradient descent, we propose to
use a second ML–NN, denoted by NNfw(·) trained
to learn the forward mapping f(·) between the input
X and the output Y [17], as shown in Fig. 1. This
NNfw(·) is completely independent from the NNbw(·).
The data–set for training it DK×(N+M)

bw can be reused
by swapping the input with the output: DK×(M+N)

fw =

{XT
k ,Y

T
k |k = 1, ...,K}. The error e(Xtarg

i ) is then
redefined as the MSE between the targeted output Ytarg

and the output of the forward multi–layer neural net-
work NNfw(·). This approach allows low-complexity
and fast computation as the gradient can be calculated
analytically, i.e. NNfw(·) is fully described by weight
matrices: Wfw = [W

(1)
fw, ...,W

(Lfw)
fw ], where Lfw is the

number of the neural network layers.
Once we have computed Xtarg, we need to check if

the results are satisfactory. Therefore, f(Xtarg) needs to
be computed and compared to the desired output. The
entire procedure for the proposed inverse system learning
is summarized in Algorithm 1.

The core of the method shown in Fig. 1 and out-
lined in Algorithm 1 is the estimation of the weight
matrices Wbw = [W

(1)
bw , ...,W

(Lbw)
bw ] and Wfw =

[W
(1)
fw, ...,W

(Lfw)
fw ] associated with the backward and

the forward neural networks, respectively. The ability to
estimate the weight matrices and learn the mappings is
highly dependent on the quality of the training data–set.
If the training data–set does not contain enough informa-
tion and the generated data severely violates Hadamard
conditions, it is very hard to learn the mapping and
thereby perform accurate predictions [12].

A procedure for training data–set generation is shown
in Algorithm 2 where U denotes uniform distribution.
It is important that the training data–set contains the
outer and mid–points of each dimension of the input
vector X = [x1, ..., xM ]T to obtain good generalization
properties. This is illustrated in Fig. 2 by red circles. The
reason is that during the training process, the algorithm
for the ML-NN weight optimization is trying to find a
set of weight matrices that minimize the mean square
error of the training data and the ML–NN behaves as an
interpolator. If the ML-NN is not trained around certain
points, it will not be able to generalize (predict) well
around those points once presented with the test data. As
a general rule, the ML–NN is not good at extrapolating
information outside the training range, so we must ensure
that outer points are always present in the training data–
set. Finally, we need to make a complete distinction
between the training and test data–sets. The test data–
set is generated by making a new run of Algorithm 2
without adding outer and mid–points.

Algorithm 1 Inverse system design
Run forward model K times Y = f(X) to generate
data–set: DK×(N+M)

bw = {YT
k ,X

T
k |k = 1, ...,K}

Train NNbw to learn X = f−1(Y)
Compute the input: Xtarg = NNbw(Y

targ)
Train NNfw to learn Y = f(X)
Evaluate the error: e = Err(Ytarg, f(Xtarg))
Err: max error or MSE, δ: error tolerance
if e > δ then

Initialize gradient descent with Xtarg

Define error: E′ =MSE(Ytarg−NNfw(X
targ))

Run gradient descent: X(i+1) = Xi − η∇E′(Xi)
end if
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Algorithm 2 Training data–set generation
Specify range of X = [x1, ..., xM ]
for k=1:K do
xk1 ∼ U [xmin

1 ;xmax
1 ]

...
xkM ∼ U [xmin

M ;xmax
M ]

Run the forward mapping f(·) to get Y:
{Yk = f([xk1 , ..., x

k
M ])}

Data–set generation:
Dk

bw = {yk1 , ..., ykN , xk1 , ..., xkM}
Dk

fw = {xk1 , ..., xkM , yk1 , ..., ykN , }
end for
Add outer and mid–points, C, to the data-set:
Dbw = [DK

bw;Cbw]
Dfw = [DK

fw;Cfw]
Randomly shuffle samples within Dbw and Dfw

Pump 1 power range
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e
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th
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p
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e

ng
th
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gePump 3 power range

Fig. 2. Hypercube illustrating the outer and mid data points (red
circles) that must be included in the training data–set.

Once a procedure for generating training data–set
has been established, we can proceed with ML-NN
weight matrices estimation. Some of the most popu-
lar algorithms for estimating the weight matrices are:
gradient descent, Newton’s method, conjugate gradient,
quasi Newton’s method, Levenberg-Marquadt, (LM), and
random projection method, (RPS).1 [12], [18]. Typically,
an estimation algorithm that results in the best general-
ization properties should to be chosen. However, the task
of choosing the most appropriate algorithm will be very
much dependent on the problem we are trying to solve,
as we cannot assume that one solution fits all. Also, a
distinction needs to be made if the forward or inverse

1Random projection method is also known as extreme learning. In
our view, random projection method is more descriptive of the method.

mapping is to be learned. Optimization algorithm that
provides the best generalization properties for learning
the forward mapping may be sub–optimal for learning
the inverse mapping.

An approach to improve the generalization properties
of the ML–NN employed for forward and inverse system
learning is to employ model combination [12], [18]. In
this paper, we employ model combination where we train
P different ML–NNs and then make predictions using
the average of the predictions made by each model –
model averaging. We do not generate P data sets as the
method of sampling and replacement is used to obtain
P different data sets.

In general, training a neural networks is time consum-
ing, but this is not an issue because it can performed
offline as it is required only once in the installation
phase as a part of calibration stage. Once the training
has been completed, and the mapping has been learned,
neural networks can then be operated in real–time to
give ultra–fast predictions. In the case of optical com-
munication, the fiber is a fairly static medium, and it
will not be necessary to retrain the models. Moreover,
for the training of NNbw(·), we can employ the random
projection method where the training is ultra–fast as only
one matrix inversion needs to be executed.

Adding a fine–optimization phase, if needed, is more
time consuming as it employs gradient descent. However,
the initial conditions are an output form the NNbw(·)
and are very close to the final solution. In other words,
the fine–optimization starts not so far away from the
final solution and it usually converges after a small
number of iterations. In any case, various methods from
machine learning community such as gradient descent
with momentum, or with Nesterov momentum may be
employed to accelerate the fine–optimization [12]. This
is a highly relevant topic for future research.

III. RAMAN AMPLIFIER DESIGN–NUMERICAL
RESULTS

In this section, the machine learning framework pre-
sented in section II, is numerically investigated for the
design of Raman amplifiers in C and C+L–band. In
Fig. 3, the considered backward pumped Raman ampli-
fication setup is shown. The backward pumping is more
practical approach for Raman amplification, compared to
the forward and the bidirectional pumping, and thereby
the most relevant to study at this stage. The proposed
framework can also be applied to forward or mixed
forward/backward pumping schemes. It is just a matter
of creating the data–set in the condition of interest and,
consequently, to properly dimension the neural networks.
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Fig. 3. A single span Raman amplifier employing backward pumping with up to five pumps.

For future work, we plan to investigate various pumping
schemes.

The considered single span, shown in Fig. 3, can be
a part of a multi-span system and also Raman ampli-
fication can take place in conjunction with EDFA. We
analyze the gain G(λ) over the entire C–band (4 THz
band between 192 and 196 THz) as well as C+L–band
(11 THz band between 185 THz and 196 THz). We
consider pumping schemes with 2, 3, 4 and 5 pumps.
The pump powers, [P1, ..., P5], and wavelength ranges,
[λ1, ..., λ5], are specified in Table I.

The Raman amplifier is described by a set of non–
linear ordinary differential equations [19]. Their expres-
sions are shown in (2) and (3):

dPs,i

dz
= −αsPs,i +CR(λs,i, λp,j)[P

+
p,j +P−p,j ]Ps,i (2)

±
dP±p,j
dz

= −αpP
±
p,j −

( λs,i
λp,j

)
CR(λs,i, λp,j)Ps,iP

±
p,j

(3)
where Ps is the average signal power, P+

p and P−p re-
spectively the co- and counter-propagating pump powers
(we only considered counter-propagating pumps), αs and
αp respectively the signal and pumps attenuation coeffi-
cients measured in km−1, λs and λp are respectively
the signal and the pump wavelengths and CR is the
Raman gain efficiency, measured in (W· km)−1, which
depends on the Raman gain coefficient gR and on the
effective area Aeff . In these equations, i identifies the
signal channel for i = {1, . . . , nch} being nch = 40
in the C–band and nch = 110 in C+L–band, whereas
j identifies the pump, for j = {1, . . . , npumps} being
npumps = 2, . . . , 5.

The differential equation (2) and (3) govern the
evolution of the power along the fiber at different

wavelengths and can be used to evaluate gains, Y =
[G(λ1), ..., G(λN )], as a function of input parameters
which are pump powers and wavelengths, i.e. X =
[P1, ..., PM , λ

p
1, ..., λ

p
M ] 2. The objective is to deter-

mine a configuration of the pump powers and wave-
lengths, Xtarg = [P targ

1 , ..., P targ
M , λtarg1 , ..., λtargM ],

that would result in targeted gain profile Ytarg =
[Gtarg(λ1), ..., G

targ(λN )], i.e. tilted gain profile, flat
gain profile or an arbitrary gain profile. This is the
general problem of gain profile design that derives
from the fact that a Raman amplifier is very flexible.
For instance, it can be used to compensate for EDFA
gain ripples in hybrid amplifiers, wavelength dependent
losses of Reconfigurable Optical Add Drop Multiplexers
(ROADM)s or in general to fix any unwanted unbalance
between channel power.

The training and test data–sets, D =
{(Gk

1 , ..., G
k
N , P

k
1 , ..., P

k
M , λ

k
1 , ..., λ

k
M )|k = 1, ...,K},

are obtained by following the procedure specified in
Algorithm 2 and using the parameters specified in
Table I. A full Raman solver (RS) needs to be run
to obtain the training and test data–sets. The RS has
pump powers and wavelengths as inputs and the gain
profile is obtained at the output. In this study, a comb
of ideal Nyquist-WDM channels is selected as an input
to the span. The WDM channels are packed at Nyquist
limit, (channel spacing equal to symbol-rate), to fully
load the entire C and C+L–band. This results in a flat
optical spectrum: 125 and 343 channels at 32 Gbaud
covering the C and C+L–band, respectively. Per-channel
signal power was set to 0 dBm. This results in a total
WDM signal power of 21 dBm (C–band) and 25 dBm

2To better complain with the physical meaning of input parameters,
i.e. pump powers and wavelengths, with respect to Sec.II, we redefine
the dimension of X as 2M.
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TABLE I
POWER AND WAVELENGTH RANGES FOR RAMAN PUMPS.

Band C C+L
Config./Param. 2 pumps 3 pumps 5 pumps 4 pumps
P1 [mW] [0:400] [0:300] [0:160] [0:200]
P2 [mW] [0:400] [0:300] [0:160] [0:200]
P3 [mW] [0:300] [0:160] [0:200]
P4 [mW] [0:160] [0:200]
P5 [mW] [0:160]
λ1 [nm] [1414:1449] [1414:1437.3] [1414:1428] [1414:1441.8]
λ2 [nm] [1449:1484] [1437.3:1460.6] [1428:1442] [1441.8:1469.5]
λ3 [nm] [1460.6:1484] [1442:1456] [1469.5:1497.3]
λ4 [nm] [1456:1470] [1497.3:1525]
λ5 [nm] [1470:1484]

(C+L–band).
It should be noted that at the output of the Raman

solver the gain is evaluated at 40 points for C–band
and in 110 points for C+L–band. This is due to the
resolution of the solver and corresponds to 100 GHz
channel spacing.

Fiber parameters are listed in the following: span
length Lspan = 100 km, attenuation αS = 0.2 dB/km
for optical data signals and αP = 0.25 dB/km for
pumps, effective area Aeff = 80 µm2, non-linear coef-
ficient γ=1.26 1/W/km, chromatic dispersion D = 16.7
ps/nm/km, and Raman coefficient gR =0.4125 1/W/km.
Standard silica Raman efficiency profile has been as-
sumed.

To determine the size of the training data–set, we have
performed investigation by increasing the set size from
2000 to 9000 points. We found that for the training
data-set of 4000 points, a good compromise in terms
of computational time required for the training stage
and the accuracy is achieved. Indeed, for increasing the
training data-set size beyond 4000, the accuracy did not
improve further. While, reducing it, allowed to speed up
training time, the accuracy was lower. Since we have
shown in [14] and in Appendix B, that the dependence
of Raman gain design on the per-channel input power is
almost negligible, the size of the training data-set will
not depend on input power if the Raman amplifier does
not reach saturation. Correspondingly, the test data–set
has up to 5000 points.

A. Arbitrary gain design - C–band

First, we would like to investigate if the backward
multi–layer neural network, NNbw(·), is able to learn
the inverse mapping, i.e. mapping between the Raman
gain and pump powers and wavelengths. To evaluate the
optimum topology and weight estimation algorithm, the
method of early stopping is employed [12]. We found
that the ML-NN topology that minimizes the test error

for NNbw(·) consists of 7 hidden layers with 800 hidden
nodes each with hyperbolic tangent as the activation
function. The model combination parameter P was set
to 200. We tested different weight estimation algorithms
and the best performance was achieved using the random
projection method (RPM). This implies that all layers
except the last one are initialized by random weights
drawn from a Gaussian distribution with zero mean
and variance σ2

RPM . The variance σ2
RPM is a hyper-

parameter and is determined using cross–validation. The
output of the network is then computed as the solution
to the regularized least squares problem. This approach
of estimating the ML-NN weights is ultra-fast as no
iterations are needed as in the case of gradient based
approaches.

For the fine–optimization, we employ NNfw(·), that
is trained with Levenberg–Marquardt learning algorithm.
It consists of 2 hidden layers each with 10 hidden nodes
and symmetric sigmoid as the activation function. By
using a simpler topology structure and not considering
model combination, it is possible to speed up the fine–
optimization step. The parameters of employed ML–
NNs, (NNbw(·) and NNfw(·)) are shown in Table II.

In Fig. 4, we plot the probability density func-
tions (pdf) for the root-mean-square-error (RMSE)
and the maximum error (ErrorMAX ) for the cases
of 2, 3 and 5 pumps. The results are shown for
two cases: when applying only the NNbw(·), legend
“Before fine–optimization”, and when adding a fine–
optimization stage based on the NNfw(·) in combina-
tion with a gradient descent algorithm, legend “After
fine–optimization”. Both RMSE and ErrorMAX are
calculated considering the target gain profile against
the one obtained with the RS with pump powers and
wavelengths provided by the proposed framework, with
or without fine–optimization. Relying on the RS for
the final error evaluation, even if the application of the
RS is computationally heavy to perform a validation
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Fig. 4. Simulation: probability density function (pdf) of the RMSE (left column) and ErrorMAX (right column), with indication
of the mean, µ, and the standard deviation, σ, values for 2, 3, and 5 pumps when using the proposed machine learning approach
for obtaining the configuration of pump powers and wavelengths given arbitrary Raman gain profiles.

over a large data–set, is the correct approach: an error
evaluation based on the NNfw(·) is faster but it is
affected by further potential errors that would mask the
real RMSE and maximum error evaluation.

The pdfs are computed over a validation data–sets

(5000 elements) with arbitrary shaped Raman gain pro-
files which were generated using Algorithm 2: this data–
set is independent with respect to the one used to train
backward and forward NNs. During the generation of the
test data–sets, we prune the elements by selecting only

8



192 193 194 195 196

Frequency [THz]

4

6

8

10

12

14
G

a
in

 [
d
B

]

2 pumps

(a) Target

Before fine-optimization

192 193 194 195 196

Frequency [THz]

4

6

8

10

12

14

G
a
in

 [
d
B

]

2 pumps

(b) Target

After fine-optimization

192 193 194 195 196

Frequency [THz]

4

6

8

10

12

14

G
a
in

 [
d
B

]

3 pumps

(c) Target

Before fine-optimization

192 193 194 195 196

Frequency [THz]

4

6

8

10

12

14

G
a
in

 [
d
B

]

3 pumps

(d) Target

After fine-optimization

192 193 194 195 196

Frequency [THz]

4

6

8

10

12

14

G
a
in

 [
d
B

]

5 pumps

(e) Target

Before fine-optimization

192 193 194 195 196

Frequency [THz]

4

6

8

10

12

14

G
a
in

 [
d
B

]

5 pumps

(f) Target

After fine-optimization

Fig. 5. Comparison between the predicted and the targeted gain profiles as a function of frequency for the flat gain design:
(a)-(b) two pumps configuration, (c)-(d) three pumps configuration and (e)-(f) five pumps configuration.

the cases where both the minimum and the maximum
values of Raman gain across the whole C–band are
inside the range from 4 to 12 dB. This allows to analyze
only Raman amplifier working in practical conditions,
avoiding cases where the gain is too low, less than
4 dB, and cases outside the moderated pumping regime

[20], which corresponds to 12 dB (i.e. 60% of 20 dB
span loss), preventing gain saturation effects and loss of
efficiency.

Fig. 4 indicates that for all the pumping schemes under
analysis, when considering only results before fine–
optimization, the mean ± standard deviation for RMSE
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Fig. 6. Flat gain case: RMSE (top row) and ErrorMAX (bottom row) as a function of gain for: (a) 2, (b) 3 and (c) 5 pumps.

TABLE II
ML-NN TOPOLOGIES AND PARAMETERS.

NNbw(·) NNfw(·)
C C+L Experiment C C+L Experiment

Training algorithm RPM RPM RPM LM LM LM
# hidden layers 7 4 4 2 2 2
# hidden nodes 800 900 700 10 10 10

Activation function tanh logsig tanh tansig logsig tansig
Model combination parameter (P) 200 200 200 1 1 1

and ErrorMAX are kept bellow 0.596±0.307 dB and
1.046±0.634 dB, respectively. This is a clear indication
that the NNbw(·) itself can learn the inverse mapping
with good accuracy. Depending on the application tar-
geted, if the required accuracy is not very tight, the
backward neural networks itself can deliver affordable
results: especially in the case of 5 pumps both errors are
reasonably small over a the whole validation data–set of
5000 cases.

In case the level of desired accuracy is higher, we
can proceed employing the NNfw(·), in combination
with the gradient descent algorithm, to fine–adjust the
values of the pump powers and wavelengths predicted
using NNbw(·). Fig. 4 illustrates a significant decrease
in both the mean and in the standard deviation values
of RMSE and ErrorMAX . For the considered pumping
schemes, the mean RMSE and mean ErrorMAX values
do not exceed ∼0.15 dB and ∼0.3 dB, respectively. We
can assert that the proposed method for designing Raman
amplifiers is highly accurate as it can deliver the required
gain profile over a wide band with negligible errors.

Moreover, these results also demonstrate the ability

of NNfw(·) to learn the forward mapping, which is
essential to perform the fine–optimization in an ultra–fast
and computationally efficient way, compared to invoking
the full Raman solver at each gradient descent iteration.

B. Flat and tilted gain design - C–band

In this section, we analyze the ability of the multi-
layer neural network, alone or in combination with the
fine–optimization stage, to predict the configuration of
pump powers and wavelengths that would result in a
flat and tilted Raman gain profiles. The considered gain
levels range from 5 to 12 dB and in the case of tilted
gain we consider a slope of 0.25 dB/THz.

In Fig. 5(a),(c) and (e), the predicted and the target
flat gain profiles are plotted as a function of the optical
frequency when using only the NNbw(·) to obtain the
corresponding set of pump powers and wavelengths for
2, 3 and 5 pumps, respectively. Overall, Fig. 5 illustrate
qualitatively that the NNbw(·) is able to provide the
pump power and wavelength allocations, resulting in a
flat gain, with relatively good precision. Finally, it can
be observed in Fig. 5 that for some limited number of
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Fig. 7. Comparison between the predicted and the targeted gain profiles as a function of frequency for the tilted gain design:
(a)-(b) two pumps configuration, (c)-(d) three pumps configuration and (e)-(f) five pumps configuration.

cases, deviations of the predicted gain profiles at low
frequencies are observable. The deviations are always
much less than 1 dB, so we can consider them almost
irrelevant. Furthermore, it is difficult to draw some gen-
eral conclusions on the occurrence of the gain deviations.
This is because the Raman gain is a nonlinear, (and non–

trivial), combination of 2, 3 and 5 separate Raman gain
profiles, depending on the number of pumps used and on
their separation. What we can observe in Fig. 5 is that for
the increasing number of pumps, the difference between
the targeted and predicted flat gain profiles decreases and
the combined Raman gain becomes more smooth.
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Next, to quantify the accuracy, in Fig. 6 RMSE and
ErrorMAX are plotted as a function of the targeted gain.
The highest errors in terms of RMSE and ErrorMAX

occur both for two pump configuration and are ∼0.6 dB
and ∼0.8 dB, respectively. The RMSE values for the
configuration with three and five pumps are much lower,
of the order of ∼0.2 dB. Likewise, the performance in
terms of ErrorMAX does not exceed 0.5 dB for 3 and
5 pumps.

Next, the fine–adjustment of the pump powers and
wavelengths is employed and the results are shown in
Fig. 5(b),(d) and (f) and Fig. 6. A comparison between
Fig. 5(a),(c) and (e) and 5(b),(d) and (f), indicates that a

significantly lower difference between the predicted and
the targeted flat gain profiles is achievable after applying
the fine–adjustments. This is also indicated in Fig. 6
in terms of the RMSE and the ErrorMAX . The RMSE
values for 2, 3 and 5 pumps are approximately the same,
namely around 0.2 dB, always lower than before fine–
optimization. In particular, the case of two pumps is
strongly improved and it reaches same error levels as
the other cases. This is an encouraging result and it also
has a practical implication for Raman amplifier design
showing that only two pumps may be needed to obtain
the flat gain profile for the entire C–band. Moreover, the
ErrorMAX for two pumps drops down to a maximum
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Fig. 10. C+L–band - flat gain case with 4 pumps: comparison between the predicted and the targeted gain profiles as a function
of frequency (a) Before fine–optimization and (b) after fine–optimization. (c) RMSE, (d) and ErrorMAX as a function of gain.

value of ∼0.4 dB which can be an acceptable level. For
3 pumps configuration, the fine–optimization does not
bring any significant benefits. Although, the ErrorMAX

improves significantly and stays below 0.2 dB for 5
pumps configuration.

In Fig. 7(a),(c) and (e), the predicted and the target
tilted gain profiles are plotted as a function of the optical
frequency when using only the NNbw(·) to obtain the
corresponding set of pump powers and wavelengths for
2, 3 and 5 pumps, respectively. We consider 1 dB of
tilt along the C–band. Fig. 8 shows the corresponding
RMSE and ErrorMAX plotted as a function of the target
gain at the lowest frequency.

Fig. 7(a),(c) and (e) illustrate a good agreement be-
tween the predicted and targeted gains, especially for 3
and 5 pumps. As for the case of flat gain, the RMSE
values become very similar, for 2,3 and 5 pumps con-
figurations, after employing NNfw in combination with
the gradient descent algorithm. Likewise, ErrorMAX are
also almost within the same range after fine–adjustment
of the pump powers and wavelengths. Finally, it should
be noticed that RMSE and ErrorMAX are very similar

before and after fine–adjustments for 5 pumps.
It is observed in Fig. 8(f) that fine–optimization will

result in higher error for gains beyond 7 dB. The reason
may be that the fine–optimization relies on NNfw(·)
which is an approximation to Raman equations. The
model mismatch between NNfw(·) and Raman equa-
tions, can potentially introduce some errors in the op-
timization process. This may happen when the solution
obtained with the NNbw(·) has already very low errors
or has reached theoretically minimum obtainable error.
In that case, the fine–optimization can no longer reduce
the error but slightly increase it (overfitting).

C. Arbitrary gain design - C+L–band

Here, we investigate the performance of proposed
framework to provide pump powers and wavelengths
allocations for the design of an arbitrary Raman gain
profile for the C+L–band. We consider four pumps with
the power and wavelength ranges specified in Table I.
The topology and the parameters for the inverse system
modelling framework are specified in Table II.
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Fig. 11. C+L–band - tilted gain case with 4 pumps: comparison between the predicted and the targeted gain profiles as a function
of frequency (a) Before fine–optimization and (b) after fine–optimization. (c) RMSE, (d) and ErrorMAX as a function of gain.

Fig. 9(a) and (b) show the probability density func-
tions before and after the fine–optimization for the
RMSE and ErrorMAX , respectively. Both RMSE and
ErrorMAX are calculated over the validation data–set
with arbitrary shaped Raman gain profiles generated
using Algorithm 2. Moreover, we also prune the elements
on the validation data–set by selecting only the cases
where both the minimum and the maximum values of
Raman gain across the whole C+L–band are inside the
range from 4 to 12 dB for reasons already explained in
Section III-A.

Fig. 9 illustrates that the NNbw(·) can learn the
inverse mapping for C+L–band with high accuracy. The
corresponding mean and standard deviation of the RMSE
are 0.25 dB and 0.12 dB, respectively. For the Errormax,
the corresponding mean and standard deviation are
0.61 dB and 0.32 dB, respectively. These values are
similar to the values obtained for the C–band.

Moreover, after applying the fine–optimization, we ob-
serve a decrease in both the mean and standard deviation
values for the RMSE and ErrorMAX to 0.18±0.07 dB
and 0.461±0.20 dB, respectively. This clearly demon-

strates the ability of the NNfw(·) to learn the forward
mapping for the C+L–band and to be employed within
the gradient descent.

D. Flat and tilted gain design - C+L–band

As a special case, we investigate the performance of
the proposed framework to provide pump power and
wavelength allocations for the design of flat and tilted
Raman gain profiles for the C+L–band. The gain levels
range from 4 to 12 dB. For the tilted gains, a slop of
0.1 dB/THz is considered to provide 1 dB of tilt along
the entire bandwidth. The topology and the parameters
for the inverse system design framework are specified in
Table II.

In Fig. 10(a), the predicted and the target flat gain
profiles are plotted as a function of the optical frequency
when using only the NNbw(·) to obtain the correspond-
ing set of pump powers and wavelengths. Fig. 10(a)
demonstrates that the NNbw(·) is able to provide pump
power and wavelength allocations, resulting in a rel-
atively flat gain profiles. The performances regarding
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Fig. 12. Experimental setup to capture the data–set for the neural networks training and further validations. Spectra were measured
at a resolution of 0.1 nm.
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RMSE and ErrorMAX are shown in Fig. 10(c) and (d),
with values lower than 0.6 dB and 1.1 dB, respectively.

Fig. 10(b) shows the predicted flat gain profiles after
applying the fine–optimization of the pump powers and
wavelengths. The results present a better match between
the target and predicted gain profiles, especially for
low frequencies, when compared to Fig. 10(a). The
maximum values for RMSE and ErrorMAX are kept
bellow 0.3 dB and 0.8 dB, as shown in Fig. 10(c) and
(d), respectively.

The results for the tilted gains, before and after the
fine–optimization, are shown in Fig. 11(a) and (b),
respectively. The RMSE and ErrorMAX curves shown
in Fig. 11(c) and (d) indicate that a highly accurate
pump power and wavelength allocation is feasible using
the proposed framework. The corresponding RMSE and
ERRORMAX value are similar to the ones obtain for
flat gain profile. The RMSE and ERRORMAX curves

present values lower than 0.6 and 1.1 dB, respectively,
before the fine–optimization, and lower than 0.4 and
0.8 dB after the fine–optimization.

TABLE III
POWER RANGES AND WAVELENGTHS FOR THE 4 RAMAN PUMPS ON

THE EXPERIMENTAL SETUP.

Pump 1 Pump 2 Pump 3 Pump 4
P [mW] [0:145] [0:158.5] [0:180] [0:152.5]
λ [nm] 1454.4 1444.8 1434.4 1423.4

IV. EXPERIMENTAL VALIDATION

In this section, a proof-of-principle experimental val-
idation of the proposed machine learning based inverse
system design framework is presented. The experimental
set-up is shown in Fig. 12. The Raman amplifier module
under consideration consists of a 100-km long standard
single mode fibre (SSMF) span and four backpropagating
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Fig. 14. Experimental validation for the flat gain case with 4 pumps: comparison between the predicted and the targeted gain
profiles as a function of frequency (a) Before fine–optimization and (b) after fine–optimization. (c) RMSE, (d) and ErrorMAX

as a function of gain.

pumps. The parameters for the Raman pumps are shown
in Table III. The only adjustable degrees of freedom are
the pump powers. We therefore investigate the perfor-
mance of the proposed framework to provide accurate
pump power allocations resulting in an arbitrary, flat and
tilted gain profiles for the entire C–band.

The experimental set-up, the parameters of the SSMF
are the same as for the simulation. The input signal occu-
pies the entire C–band (192-196 THz) and is generated
by an amplified spontaneous emission (ASE) source.
Compared to the simulations, here, we use an arbitrary
input signal power profile. The total input signal power
to the span is +2.6 dBm.

The pump powers are controlled by the voltages which
are specified using a MATLAB script that follows the
procedure described in Algorithm 2. An optical spec-
trum analyzer (OSA) is used to capture optical power
spectra at a 0.1 nm resolution. The Raman gain profiles
are obtained by the difference in the recorded optical
power spectra when the pump powers are on and off.
This is illustrated in Fig. 12. The Raman gain is then

discretized to obtain 40 C–band channels. We collect
3000 data points and split it in half for the training
and the validation. The 3000 gain profiles are shown
on the right side of Fig.12, with gains varying from
almost 0 to 13 dB for some channels. We found out
that the training data–set of 1500 is enough to learn
the mapping. Compared to simulations, where training
data–set contained 4000 examples, the wavelengths are
fixed, and the dimensionality of the input space to the
ML-NN is thereby reduced. Due to the fixed wavelength
allocation of the pumps, there is a tendency to provide
higher gains for higher frequencies.

A. Arbitrary gain design

Fig.13 shows the pdf curves for the RMSE and the
ErrorMAX computed over the validation data–set. The
error is computed in the following way: Using the
training data, the mapping between the Raman gain
profiles and pump powers is learned using the proposed
machine learning framework. Then, given the arbitrary
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Fig. 15. Experimental validation for the tilted gain case with 4 pumps: comparison between the predicted and the targeted gain
profiles as a function of frequency (a) Before fine–optimization and (b) after fine–optimization. (c) RMSE, (d) and ErrorMAX

as a function of gain.

gains, from the validation set, we compute the cor-
responding pump powers using the learned mapping.
This is all performed offline. Next, using the obtained
pump powers, we run the experiment and measure the
corresponding Raman gain profiles and compare them to
the ones in the validation set.

Fig.13 illustrates that highly accurate pump power
allocation is feasible. When just employing NNbw(·)
to learn the mapping, the corresponding mean RMSE
and Errormax are 0.20 and 0.36 dB, with the standard
deviation of 0.09 and 0.17 dB, respectively. It is also
observed in Fig.13 that no improvements are obtained af-
ter performing fine–optimization. Indeed, slightly higher
mean and standard deviations are observed. This may
have to do with the fact that NNbw(·) already provides
theoretically minimum achievable error. A similar trend
is observed for the simulations results in Fig. 8(f) as
explained earlier.

B. Flat and tilted gain design

Next, we investigate if the learned mapping, between
the Raman gain profiles and pump powers, can be used to
predict pump powers that will result in a flat and tilted
gain profiles. We would also like to stress that given
the four pump powers with ranges specified in Table III
and fixed wavelength, we are not sure if it is physically
possible to achieve completely flat gain across the entire
C–band.

In Fig. 14(a)-(b), the predicted and the target (flat) gain
profiles are shown before and after the fine–optimization.
It is observed that when only employing NNbw, the
deviation between the predicted and target gain increases
for gains beyond 4 dB. However, after applying fine–
optimization the predicted flat gain profiles are achiev-
able. We should also keep in mind that the employed
Raman module for the experiment, provides lower gains
for lower frequencies. This may be the reason why the
largest deviations from the targeted flat gain are observed
at lower frequencies. Fig. 14(c)-(d) shows the RMSE
and Errormax as a function of gain. It is observed that
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relatively low RMSE and Errormax below 0.5 dB and
1.4 dB, respectively, are obtainable.

The results for the design of the tilted gain are shown
in Fig. 15. The results indicate that accurate tilted gain
design is feasible using the proposed machine learning
framework. Fig. 15(c-d) shows that compared to the
flat gain design Fig. 14(c-d), lower maximum RMSE
and Errormax are achievable before and after fine–
optimization.

V. DISCUSSIONS ON SPEED, COMPLEXITY AND
SPECTRUM USED FOR TRAINING

Regarding the complexity and speed: the approach
presented in our manuscript relies on supervised learning
(training stage) which can be performed as part of
the calibration stage or during the deployment stage.
During the training stage, the mapping between the
Raman gain and pump powers and wavelengths are
learned. This implies that the weight matrices of the
multi–layer neural network, NNbw(·), are learned and
the hyper–parameters are determined. Once this has
been completed, the response of the NNbw(·) is almost
immediate for an arbitrary gain design as it corresponds
to matrix multiplication. This is not the case for the
approach that relies on genetic algorithms, [10], where
for any new gain profile a new optimization in terms of
pump powers and wavelengths needs to be performed.
As already mentioned in the introduction, this has certain
drawbacks.

Regarding the complexity added by the fine–
optimization, it is shown that, in many cases, the first
ML–NN, NNbw(·), will provide accurate enough results
such the fine–optimization is not needed. In case a user
needs a more accurate solution, the fine-optimization
process based on the second ML-NN, NNfw(·), will add
some extra complexity as the pump powers and wave-
lengths are fine adjusted using gradient descent. How-
ever, NNbw(·) provides a good set of initial pump pow-
ers and wavelengths and therefore the fine–optimization
may converge after a small number of iterations. The
convergence time will also depend on the required
accuracy of the predicted gain. Also, there are many
modification to gradient descent that can be employed
to accelerate the learning and obtain faster convergence
time [12]. This is left for the future work, as the main
objective of the submitted manuscript is to demonstrate
the novel idea and also trigger new research directions.

Finally, we can affirm that a direct and quantitative
comparison with method presented in [10] and [11]
in term of complexity and speed can not easily be
conducted. Computational complexity for example in

[10] depends on the number of iterations in the genetic
algorithm, that can vary based on the the algorithm set–
up and targeted accuracy. Finally, considering just the
speed of each approach depends on even larger set of
conditions, like specific numerical algorithms used for
the implementation, the hardware employed (GPU or
CPU) and more precisely on their combination.

To demonstrate the main principles behind the pro-
posed framework, we needed to consider a simplified
case where the input power spectrum is flat. Considering
the non–flat input spectrum, the set of per-channel power
levels to be swept for the generation of the training data-
set would significantly increase. This would translate
into an increased input dimensionality NNbw(·).

However, our assumption is not far from practical
cases: usually a well designed link is run with almost
flat power in every span. In our example of applications,
we show how to design a Raman amplifier delivering
a flat gain. And in case of second amplification stage
based on EDFA, usually EDFAs are coupled with a gain
flattening filter (GFF) to equalize the output spectrum.

We agree that in realistic cases spectral flatness cannot
perfectly be controlled, but ripples/tilts on span per
span basis can be very limited, of the order of 0.5 dB.
Under this condition of small perturbation of the flatness
we can further add two comments. First is that such
ripples/tilts are distributed over the spectrum in random
manner, so span after span they do not accumulate but
usually there is a statistical averaging toward the flat
condition. Second, if the ripple/tilt is not very large
as we commented above, the Raman amplification will
not suffer so much this variation, and gains predicted
by NNbw(·) will still have limited errors. Moreover,
the NNbw(·) could even be used to design a Raman
amplifier able to cancel the ripple/tilt delivering a flat
output spectrum. This is the reason why we inserted the
tilted gain design case in our paper. Finally, if the error
resulting from the non–flat spectrum is too large, fine–
optimization will act on it and reduce it.

In the end, even if the main motivation of having
selected a flat input spectrum as simplified assumption
to ease the analysis of the proposed framework, we
can consider it not very far from practical condition
of realistic optical links. However, for the future work,
plan to investigate the performance of the proposed
framework when the input spectrum is not flat.

VI. CONCLUSION AND FUTURE WORK

A low–complexity and low–latency framework, based
on machine learning, has been demonstrated for the
inverse system design. The framework consists of two
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stages: 1) a multi-layer neural network employed to learn
the inverse mapping and 2) a multi-layer neural network,
representing the forward mapping, in combination with
the gradient descent algorithm for fine–adjustments. The
first stage can also be used in combination with various
optimization algorithms to provide a qualified set of
initial conditions.

The framework has been demonstrated, using nu-
merical simulations, to provide highly-accurate pump
power and wavelength configurations for the design of
C and C+L–band Raman amplifiers with arbitrary, flat
and tilted gain profiles. Moreover, the corresponding
experimental verification has been presented for the
design of C–band Raman amplifiers. The experimental
results demonstrate that highly–accurate pump power
allocations for arbitrary, flat and tilted gains are feasible
using the proposed framework.

To reduce the training time, for the future work, it
would be useful to investigate the minimum size of the
training data–set required to obtain a certain error. As
a final remark, experimental validation extended to the
C+L–band would be desirable and will be considered in
future publications.
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APPENDIX

A. Learning mappings using neural networks

The objective of the neural network training is to learn
the underlying generator of the training data–set given
a set of input and output variables x = [x1, ..., xN ]
and y = [y1, ..., yN ], respectively. The data generation
process is described as y = f(x) + ε, where f(·) is a
mapping function and ε is an additive noise term that has
Gaussian distribution. It is crucial to consider the noise
term ε as all measurements are noisy or to express it
differently, there will always be an uncertainty associated
with measurements.

Considering the finite size of the training data–set,
N , the neural network can only learn the underlying
data generation within the set (x,y) ∈ RN×1. Most
importantly, we must limit the complexity of the network
by introducing a regularization term to achieve a good

balance between bias and the variance of the networks
output. So, already at this point we can state that the
output of the neural network, denoted by NN(x;w), is
an approximation to the output of the “true” system y. w
are the weights describing the neural network. Therefore,
there will always be present a finite error between the
output of the neural network and y.

Now, let’s go one step further. The neural network
training is performed by solving the sum–of–squares
error which is defined as:

E(w) =
1

2

N∑
k=1

[NN(xk;w)− yk]2 (4)

We would like the network output to be as close as
possible to yk, and the minimization of the error is
obtained by following functional differentiation:

dE

dNN(xk;w)
= 0 (5)

The solution to this minimization problem is [18]:

NN(xq;w
∗) = E[yk|x] =

∫
ykp(yk|x)dyk (6)

where p(yk|x) is the conditional probability density
and w∗ represent the optimal weights, E[·] represents
average and E[yk|x] is the conditional average. This
means that given the optimal neural network weights,
w∗, the output of the neural network corresponds to the
conditional average of the output data conditioned on
the input vector. In conclusion, we do not get the exact
replica of f(·) or f−1(·).

B. Dependence on input signal power levels

In this section, the dependence of the predicted Raman
gain profile on per–channel input signal power levels
is investigated. We have already shown in [14] that no
significant gain prediction errors occur when changing
the per-channel inputs signal power levels from -3 dBm
to 3 dBm. This verifies that if the Raman amplifier is
not operated in the saturated regime, the gain is almost
independent of the input signal power levels. Typically,
any practical application of Raman amplifier usually
avoids the operation in saturation regime.

To further investigate the dependence on the input
signal power levels and demonstrate that the performance
of the proposed framework is independent over even a
broader range of input signal power levels, a new set of
simulations have been carried out.

The employed framework is trained with 0 dBm per-
channel input signal power levels and only NNbw(·)

19



192 193 194 195 196
f  [THz]

7.5

7.75

8

8.25

8.5
G

  [
dB

]
5 pumps

Target
Predicted

-10

-8

-6

-4

-2

0

2

4

6

P
ch

 [d
B

m
]

Fig. 16. Gain profile for increasing per-channel input signal power
levels from -10 dBm to 6 dBm.
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Fig. 17. Gain profile prediction errors for increasing per-channel input
signal power levels from -10 dBm to 6 dBm.

is employed. Five Raman pumps are considered. The
machine learning framework is employed to predict
pump powers and wavelengths needed to deliver a flat
gain of 8 dB.

Next, we use the predicted pump powers and wave-
lengths, and run the Raman solver to obtain the predicted
Raman profile gains. We also vary per-channel inputs
signal power levels. We still consider flat input signal
power spectrum. In Fig. 16, the predicted gain is plotted
as a function of frequency when varying per-channel
input signal power levels from -10 dBm to 6 dBm (blue
to red lines). It is observed that the predicted Raman gain
profile is not affected by changing the input signal power
levels. Next, in Fig. 17, the maximum error and RMSE
are plotted as a function of per-channel input signal

power levels. The errors have a negligible dependence
on input power. Moreover, we would like to stress that
here we have only used the NNbw(·) for predicting the
gain, without employing the fine–optimization proposed
in the paper, as it was not needed.
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