Harmonic entomological radars have been used in the last decades to track small and lightweight passive tags carried by various insects, usually flying at low altitude and over flat terrain. Despite being exploited in many applications, not a lot of progress was achieved in terms of performances over the years. This paper reviews the research work done in this topic throughout the European LIFE project STOPVESPA, from 2015 to 2019. The main objective of LIFE STOPVESPA was to contain the invasive Asian hornet (Vespa velutina) and prevent it from further invading Italy. Among the foreseen activities, a new harmonic radar has been developed as an effective tool to locate the hornets nests to be destroyed. A preliminary prototype, based on a magnetron generator, was tested in 2015, showing a detection range of about 125 m. A first upgrade of this prototype was released in 2016, allowing to increase the detection range up to 150 m. A new approach, based on a solid state power amplifier and a digitally modulated signal, was then adopted for the second prototype developed in 2017 and extensively run in 2018; the detection range raised to 500 m. A last engineered prototype was eventually built for the 2019 summer campaign with additional improvements. This tool has been extensively validated over the last years with the Asian hornet but it has potential for tracking and monitoring many other flying insects.

An harmonic radar prototype for insect tracking in harsh environments / Milanesio, D.; Bottigliero, S.; Saccani, M.; Maggiora, R.; Viscardi, A.; Gallesi, M. M.. - ELETTRONICO. - (2020), pp. 648-653. ((Intervento presentato al convegno 2020 IEEE International Radar Conference, RADAR 2020 tenutosi a usa nel 2020 [10.1109/RADAR42522.2020.9114540].

An harmonic radar prototype for insect tracking in harsh environments

Milanesio D.;Bottigliero S.;Saccani M.;Maggiora R.;
2020

Abstract

Harmonic entomological radars have been used in the last decades to track small and lightweight passive tags carried by various insects, usually flying at low altitude and over flat terrain. Despite being exploited in many applications, not a lot of progress was achieved in terms of performances over the years. This paper reviews the research work done in this topic throughout the European LIFE project STOPVESPA, from 2015 to 2019. The main objective of LIFE STOPVESPA was to contain the invasive Asian hornet (Vespa velutina) and prevent it from further invading Italy. Among the foreseen activities, a new harmonic radar has been developed as an effective tool to locate the hornets nests to be destroyed. A preliminary prototype, based on a magnetron generator, was tested in 2015, showing a detection range of about 125 m. A first upgrade of this prototype was released in 2016, allowing to increase the detection range up to 150 m. A new approach, based on a solid state power amplifier and a digitally modulated signal, was then adopted for the second prototype developed in 2017 and extensively run in 2018; the detection range raised to 500 m. A last engineered prototype was eventually built for the 2019 summer campaign with additional improvements. This tool has been extensively validated over the last years with the Asian hornet but it has potential for tracking and monitoring many other flying insects.
978-1-7281-6813-5
File in questo prodotto:
File Dimensione Formato  
Milanesio_IEEEradar2020_Final.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 3.62 MB
Formato Adobe PDF
3.62 MB Adobe PDF Visualizza/Apri
Milanesio-Anharmonic.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2846084