We consider an open multiwing system, composed of N 2 disjoint openplane curves, not necessarily symmetric, and examine the corresponding (con-strained) induced drag minimization problem. To this end, we first derive theassociated Euler-Lagrange system of equations, which is then reduced to anequivalent system of Cauchy singular integral equations. By generalizing a pre-vious approach of ours for the case of a single open wing, we obtain existenceand uniqueness results for the problem solution in a product of weighted Sobolevtype spaces. This system is then solved by applying to it a collocation-quadraturemethod. For this, we prove stability and derive corresponding error estimates.Finally, to test the efficiency of the proposed numerical method, we apply it tosome multiwing systems
Properties and numerical solution of an integral equation system to minimize airplane drag for a multiwing system / Junghanns, Peter; Monegato, Giovanni; Demasi, Luciano. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 1099-1476. - ELETTRONICO. - (2020), pp. 1-24.
Titolo: | Properties and numerical solution of an integral equation system to minimize airplane drag for a multiwing system |
Autori: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1002/mma.6786 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Multiwings_Final.pdf | 2. Post-print / Author's Accepted Manuscript | Non Pubblico - Accesso privato/ristretto | Embargo: 16/08/2021 Richiedi una copia | |
Properties and numerical solution of an integral equation system to minimize airplane drag for a multiwing system.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2842718