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Properties and Numerical Solution of an Integral
Equation System to Minimize Airplane Drag for a

Multiwing System∗

P. Junghanns†, G. Monegato‡, L. Demasi§

Abstract

We consider an open multiwing system, composed by N ≥ 2 disjoint open plane
curves, not necessarily symmetric, and examine the corresponding (constrained) in-
duced drag minimization problem. To this end, we first derive the associated Euler-
Lagrange system of equations, which is then reduced to an equivalent system of Cauchy
singular integral equations. By generalizing a previous approach of ours for the case
of a single open wing, we obtain existence and uniqueness results for the problem so-
lution in a product of weighted Sobolev type spaces. This system is then solved by
applying to it a collocation-quadrature method. For this, we prove stability and derive
corresponding error estimates. Finally, to test the efficiency of the proposed numerical
method, we apply it to some multiwing systems.

KEYWORDS: Singular integral equations, Discrete collocation method, Constraint mini-
mization

MS CLASSIFICATION: 45E05; 65R20; 49R30

1 INTRODUCTION

Reduction of induced drag, one of the major airplane drag components, could have a high
impact on the reduction of pollution and emissions. This is one of the driving motivations
behind the idea of innovative wing configurations. To this end, as a preliminary step, in
[3, 6] the authors have considered the case of a single open curve in the y-z Cartesian plane,
symmetric with respect to the z-axis. In particular, they have studied the corresponding
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(constrained) induced drag minimization problem. By applying a classical variational ap-
proach, they have derived the associated Euler-Lagrange (integral) equation (ELE) for the
unknown wing circulation distribution. The ELE is finally rewritten as a Cauchy singular
integral equation. In [6], the existence and uniqueness of the solution of this equation has
been proved under the assumption that the curve logarithmic capacity is different from 1.

Then, in [6], a biwing systems defined by two disjoint open curves (i.e., lifting wings),
in general having unequal shape and wingspans, but both symmetric with respect to the
z-axis, was considered. By applying the same classical variational approach, properly gener-
alized, for the corresponding induced drag minimization problem the authors have derived
the associated system of Euler-Lagrange (integral) equations (ELE) for the unknown wing
circulation distributions. In its final form, these reduce to a system of two Cauchy singular
integral equations. Some applications and results have been reported in [7].

Very recently, the same authors of [4] have generalized their results to a system of N
disjoint open wings. Also in this case, by applying the same approach mentioned above they
have obtained the associated N × N system of Cauchy singular integral equations. This
case is of importance when a complex wing configuration, such as the truss-braced one,
is interpreted as the limiting case of a multiwing system, obtained by moving to zero the
distances between single (open and disjoint) wings (see [5, 12]).

In all the above three cases, wings are assumed to be symmetric, with respect to the
airplane vertical plane of symmetry, and the problem constraint is defined by the prescribed
airplane total lift. Most important, existence and uniqueness of the solution of the corre-
sponding ELE, in proper weighted Sobolev type spaces, have been assumed to hold, except
in [6] for a single curve. Under these major assumptions, in all three cases the authors have
then derived several new results of interest in wing theory. Thus, a mathematical proof
for the existence and uniqueness property of the solution of the ELE system, hence of the
induced drag minimization problem, is required.

To give numerical evidence that the solution existence and uniqueness assumption holds,
the authors of the above papers have performed an intensive numerical testing. To carry out
this testing, they have solved the ELE system by applying to it a discrete polynomial collo-
cation method, based on Chebyshev polynomials and a corresponding Gaussian quadrature.
Although the convergence of this method has been confirmed by the numerical testing, this
property has not been proved, hence no error estimates have been obtained. Thus, these are
key results that must be obtained.

In [11], we have considered the first case of a single open wing, not necessarily sym-
metric. By following an approach different from the more classical one applied in the
above papers, without the above mentioned curve restriction we have obtained existence
and uniqueness results for the ELE solution in suitable weighted Sobolev type spaces. Then,
for the collocation-quadrature method used to solve the singular integral equation, we have
proved stability and derived error estimates.

In this new paper, we consider an open multiwing system, composed by N ≥ 2 disjoint
open plane curves, not necessarily symmetric, and more general lift conditions. These are
defined by prescribed global lifts on wing subsets. For this more general problem, we examine
and numerically solve the associated Euler-Lagrange system of equations. More precisely, for
the drag minimization problem defined on a system of (in general non-symmetric) wings, the
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equivalent system of Cauchy singular integral equations is provided, the unique solvability
of this system of equations is proved, and an efficient numerical method for its solution is
proposed and tested. An estimate of the convergence behavior of the method has also been
obtained.

The main physical quantities and formulas, that are needed to describe the minimization
problem, are briefly recalled in Section 2. In Section 3, by generalizing the approach we
have used in [11], for the solution of the equivalent Cauchy singular integral equation system
we obtain existence and uniqueness results in a product of weighted Sobolev type spaces,
without requiring the curve symmetry restriction. Then, in Section 4, for the collocation-
quadrature method we use to solve the above system we derive an error estimate. In the
case of symmetric lifting lines, this method naturally reduces to that proposed in [4]. To
test the efficiency of the proposed method and the error estimate previously obtained for
it, in Section 5 we apply the method to two biwing systems. Finally, in the last section we
describe a new application of our results and further questions to be answered.

2 THE DRAG MINIMIZATION PROBLEM

Following [4], we consider a system of N wings, each of them defined by a single open
lifting line `k , k = 1, . . . , N , in the Cartesian y-z plane and represented by a curve `k,

having parametric representation ψk(t) =
[
ψ1k(t) ψ2k(t)

]T
, |ψ′k(t)| 6= 0, t ∈ [−1, 1]. It is

assumed that `k ∩ `j = ∅ for j 6= k. The corresponding arc length abscissa ηk is then defined
by

ηk(t) =

∫ t

0

|ψ′k(s)| ds, (1)

where, here and in the following, |·| denotes the Euclidean norm. This abscissa will run from
ηk(−1) = −ak to ηk(1) = bk for some positive real numbers ak and bk. Moreover, ηk(0) = 0.

For simplicity, it is also assumed that the lifting lines `k are sufficiently smooth. That
is, it is assumed that the ψik(t), i = 1, 2, are continuous functions together with their first
m ≥ 2 derivatives on the interval [−1, 1] (i.e., ψik ∈ Cm[−1, 1]). A point on the kth lifting

line, where the aerodynamic forces are calculated, is denoted by rk =
[
yk zk

]T ∈ `k, with

rk = rk(ηk) =
[
yk(ηk) zk(ηk)

]T
.

The expressions of the total lift L and induced drag Dind in terms of the (unknown)
circulations Γk on `k are given by

L = L(Γ) =
N∑
k=1

L(Γk) with L(Γk) = −ρ∞V∞
∫ bk

−ak
τyk(ηk)Γk(ηk) dηk (2)

and

Dind = Dind(Γ) = −ρ∞
N∑
j=1

∫ bj

−aj
vnj(ηj)Γj(ηj)dηj, (3)

respectively, where Γ =
[

Γj
] N
j=1

.
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The quantities ρ∞ and V∞ are given positive constants which indicate the density and
free stream velocity, respectively. Further, τyk(ηk) = y′k(ηk) is the projection on the y-axis of
the unit vector tangent to the lifting line `k, while vnj is the so-called normalwash associated
with `j. This latter has the representation

vnj(ηj) =
1

4π

N∑
k=1

∫ bk

−ak
Γ′k(ξk)Yjk(ηj, ξk) dξk, −aj < ηj < bj, (4)

where

Yjk(ηj, ξk) = − d

dηj
ln |rk(ξk)− rj(ηj)| . (5)

The function Yjk(ηj, ξk) has a singularity of order 1 when j = k and ηj = ξk, and in that
case the integral in (4) is a Cauchy principal value one.

Let m and n1, . . . , nm, 1 ≤ m ≤ N , be positive integers, with 0 =: n0 < n1 < . . . < nm =
N when m > 1 and n1 = N when m = 1. The problem we need to solve is the minimization,
in a suitable space, of the functional Dind(Γ), subject to the prescribed lift constraints

nj∑
k=nj−1+1

L(Γk) = Lpres,j , j = 1, . . . ,m . (6)

We remark that the multiwing problem examined in [4, 5, 12] corresponds to the case m = 1,
while the choice nj = j implies the lift constraint on each wing, an additional case of possible
wing theory interest.

In order to get a system of equations, in which every unknown function is defined on a
unique interval, we go back to the interval [−1, 1]. For this, we use the notations

Γ0k(t) := Γk(ηk(t)), r0k(t) := rk(ηk(t)) = ψk(t),

and

Y0jk(t, s) := − d

dt
ln |r0k(s)− r0j(t)| (7)

for t, s ∈ [−1, 1], as well as the respective relations

Γ′0k(t) = Γ′(ηk(t))η
′
k(t), ψ′1k(t) = y′k(ηk(t))η

′
k(t),

and
Y0jk(t, s) = Yjk(ηj(t), ηk(s))η

′
j(t).

Conditions (6) then take the new forms

nj∑
k=nj−1+1

∫ 1

−1

ψ′1k(t)Γ0k(t) dt = γj := −Lpres,k

ρ∞V∞
, j = 1, . . . ,m . (8)

Moreover, from (3) and (4) we get

Dind = Dind(Γ0) = −ρ∞
4π

N∑
j=1

∫ 1

−1

N∑
k=1

∫ 1

−1

Y0jk(t, s)Γ
′
0k(s) dsΓ0j(t) dt, (9)

where Γ0 =
[

Γ0k

] N
k=1

.
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3 THE EULER-LAGRANGE EQUATION AND ITS

PROPERTIES

For a Jacobi weight ρ(t) := vα,β(t) = (1−t)α(1+t)β with α, β > −1, let us recall the definition
of the Sobolev-type space (cf. [1]) L2,r

ρ = L2,r
ρ (−1, 1) , r ≥ 0 . For this, by L2

ρ = L2,0
ρ we denote

the real Hilbert space of all (classes of) quadratic summable functions w.r.t. the weight ρ(t)
f : (−1, 1) −→ R, equipped with the inner product

〈f, g〉ρ :=

∫ 1

−1

f(t)g(t)ρ(t) dt

and the norm ‖f‖ρ =
√
〈f, f〉ρ . In the case α = β = 0, i.e., ρ ≡ 1, we write 〈f, g〉 and ‖f‖

instead of 〈f, g〉ρ and ‖f‖ρ, respectively. If {pρn : n ∈ N0} denotes the system of orthonormal
w.r.t. ρ(t) polynomials pρn(t) of degree n with positive leading coefficient, then

L2,r
ρ :=

{
f ∈ L2

ρ :
∞∑
n=0

(1 + n)2r |〈f, pρn〉ρ|
2 <∞

}
.

Equipped with the inner product

〈f, g〉ρ,r =
∞∑
n=0

(1 + n)2r〈f, pρn〉ρ〈g, pρn〉ρ

and the norm ‖f‖ρ,r :=
√
〈f, f〉ρ,r, the set L2,r

ρ becomes a Hilbert space. Note that, when
α = β = −1

2
and α = β = 1

2
, the spaces L2,r

ρ were also introduced in [9, Section 1] with a

slightly different notation. Let ϕ(t) =
√

1− t2 and define

V :=
{
f = ϕu : u ∈ L2,1

ϕ

}
together with 〈f, g〉V := 〈ϕ−1f, ϕ−1g〉ϕ,1 and ‖f‖V := ‖ϕ−1f‖ϕ,1.

In what follows, we denote by D the operator of generalized differentiation. An important
property of this operator with respect to the L2,r

ρ spaces is recalled in the next lemma, where

we have set ρ(1)(t) = (1− t)1+α(1 + t)1+β = ρ(t)(1− t2).

Lemma 3.1 ([2], Lemma 2.7, cf. also [1], Theorem 2.17). For r ≥ 0, the operator of
generalized differentiation D : L2,r+1

ρ −→ L2,r

ρ(1)
is a continuous one.

Lemma 3.2 ([11], Lemma 2). For f ∈ V , we have f ∈ C[−1, 1] with f(±1) = 0.

Using here and in the following the notation
[
fk
] N
k=1

to identify a vector of the form[
f1 . . . fN

]T
, the problem we aim to solve (cf. [3]) can be written as follows.

(P) Find a function Γ0 =
[

Γ0k

] N
k=1
∈ VN , which minimizes the functional (cf. (9))

F (Γ0) := −
N∑
j=1

∫ 1

−1

N∑
k=1

∫ 1

−1

Y0jk(t, s)Γ
′
0k(s) dsΓ0j(t) dt

subject to (cf. (8))

nj∑
k=nj−1+1

〈ψ′1k,Γ0k〉 = γj , j = 1, . . . ,m .
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If we define

〈f ,g〉N :=
N∑

k=1

〈fk, gk〉 , f =
[
fk
] N
k=1

, g =
[
gk
] N
k=1

,

and the linear operator

(Af) (t) :=

[
− 1

π

N∑
k=1

∫ 1

−1

Y0jk(t, s)f
′
k(s) ds

] N

j=1

, −1 < t < 1, (10)

then the problem can be reformulated as follows:

(P) Find a function Γ0 =
[

Γ0k

] N
k=1
∈ VN which minimizes the functional F (Γ0) :=

〈AΓ0,Γ0〉N on VN subject to the conditions

nj∑
k=nj−1+1

〈ψ′1k,Γ0k〉 = γj , j = 1, . . . ,m .

The formulation of this problem is correct, which can be seen from the following Lemma 3.4.

Lemma 3.3 ([11], Lemma 3). If ψik ∈ Cm[−1, 1] for all i = 1, 2, k = 1, . . . , N , and for
some integer m ≥ 2 and |ψ′k(t)| 6= 0 for t ∈ [−1, 1] and k = 1, . . . , N , then the functions
Y0jj(t, s) have the representation

Y0jj(t, s) =
1

s− t
+Kj(t, s), (11)

where the functions Kj : [−1, 1]2 −→ R are continuous together with their partial derivatives
∂i+`Kj(t, s)

∂ti∂s`
, i, ` ∈ N0, i+ ` ≤ m− 2.

Lemma 3.4. The operator A : VN −→ (L2
ϕ)N is a linear and bounded one and, consequently,

〈Af , f〉N is well defined for all f ∈ VN .

Proof. Let Un = pϕn and Tn = pϕ
−1

n . Then, recalling Lemma 3.2 and the well known property
DTn = nUn−1, for f ∈ V we have:

‖Df‖2
ϕ =

∑∞
n=0 |〈Df, ϕ−1Tn〉ϕ|2 =

∑∞
n=0 |〈Df, Tn〉|

2 =
∑∞

n=1 |〈f, nUn−1〉|2

=
∑∞

n=0(1 + n)2 |〈ϕ−1f, Un〉ϕ|2 = ‖ϕ−1f‖2
ϕ,1 = ‖f‖2

V.

Consequently, the operator D : VN −→ (L2
ϕ)N defined by Df :=

[
Dfk

] N
k=1

is an isomet-

rical isomorphism, where ‖f‖VN =

(
N∑
k=1

‖fk‖2
V

) 1
2

, ‖f‖(L2
ϕ)N =

√
〈f , f〉ϕ,N , and 〈f ,g〉ϕ,N =

N∑
k=1

〈fk, gk〉ϕ .
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By relation (11), the operatorA defined in (10) can be written in the formA = −(S+K)D
with

(Sf)(t) :=

[
1

π

∫ 1

−1

fj(s) ds

s− t

] N

j=1

, −1 < t < 1

and

(Kf)(t) :=

[
N∑
k=1

1

π

∫ 1

−1

Kjk(t, s)fk(s) ds

] N

j=1

, −1 < t < 1,

where

Kjk(t, s) :=

{
Kj(t, s) : j = k,
Y0jk(t, s) : j 6= k.

(12)

It is well known that the Cauchy singular integral operator S : (L2
ϕ)N −→ (L2

ϕ)N is
bounded ([8, Theorem 4.1]) and that K : (L2

ϕ)N −→ (L2
ϕ)N is compact. Consequently, for

f = ϕu ∈ VN we have that 〈Af , f〉N = 〈Af ,u〉ϕ,N is a finite number, since both Af and u
belong to (L2

ϕ)N . �

In the following lemma we give a representation of the operator A defined in (10), which
is crucial for our further investigations. From this representation, it is seen that the operator
A is an example of an hypersingular integral operator in the sense of Hadamard (cf., for
example, the representation of Prandtl’s integro-differential operator in [2, Section 1], where
N = 1, r0(t) = t, and B is equal to the Cauchy singular integral operator S).

Lemma 3.5. For all f ∈ VN , the relation

Af = DBf (13)

holds true, where

(Bf)(t) :=

[
N∑
k=1

1

π

∫ 1

−1

ln |r0k(s)− r0j(t)| f ′k(s) ds

] N

j=1

(14)

and where D is the operator of generalized differentiation already used in the proof of Lemma
3.2.

Proof. Since A = −(S+K)D and since D : VN −→ (L2
ϕ)N is an isometrical mapping (cf. the

proof of Lemma 3.4), it suffices to show that −(S +K)g = DB0g is valid for all g ∈ (L2
ϕ)N ,

where

(B0g) (t) =

[
N∑
k=1

1

π

∫ 1

−1

ln |r0k(s)− r0j(t)| gk(s) ds

] N

j=1

.

Since
Z0jj(t, s) := ln |r0j(s)− r0j(t)| = ln |s− t|+K0j(t, s) (15)

with a function K0j : [−1, 1]2 −→ R which is continuous together with

∂K0j(t,s)

∂t
= ∂

∂t

[
ln |r0j(s)− r0j(t)| − ln |s− t|

]
(7)
= −Y0jj(t, s) + 1

s−t
(11)
= −Kj(t, s)
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the operator B0 : (L2
ϕ)N −→

(
L2,1
ϕ−1

)N
is bounded (see [10, Section 5] and [1, Lemma 4.2]).

Moreover, D :
(
L2,1
ϕ−1

)N −→ (L2
ϕ)N is continuous ([2, Lemma 2.7]), such that on the one

hand, the operator DB0 : (L2
ϕ)N −→ (L2

ϕ)N is linear and bounded. On the other hand, the
operator S + K : (L2

ϕ)N −→ (L2
ϕ)N is also linear and bounded. Thus, it remains to prove

that ∫ 1

−1

Y0jk(t, s)g(s) ds = − d

dt

∫ 1

−1

Z0jk(t, s)g(s) ds, −1 < t < 1 (16)

for all g from a linear and dense subset of L2
ϕ, where we have defined the functions Z0jk(t, s) :=

ln |r0k(s) − r0j(t)|. In case of j 6= k, this is obvious. For the case of j = k, we refer to (15)
and the proof of [11, Lemma 5]. �

In the following, the symbol Θ will denote the trivial element of the linear space under
consideration.

Lemma 3.6. The operator A : VN −→ (L2
ϕ)N is symmetric and positive, i.e. ∀ f ,g ∈ VN ,

〈Af ,g〉N = 〈f ,Ag〉N and, ∀ f ∈ VN \ {Θ}, 〈Af , f〉 > 0.

Proof. Using relation (13), Lemma 3.2, partial integration, and Fubini’s theorem, we get, for
all f ,g ∈ VN ,

〈Af ,g〉N = − 1

π

N∑
j=1

N∑
k=1

∫ 1

−1

∫ 1

−1

f ′k(s) ln |r0k(s)− r0j(t)| ds g′j(t) dt = 〈f ,Ag〉N . (17)

If we set ` = `1 ∪ . . . ∪ `N and, for z ∈ `,

µ(z) = fk(t) if z = r0k(t) ∈ `k,

then
〈Af , f〉N = 1

π

∑N
j=1

∑N
k=1

∫ 1

−1

∫ 1

−1
ln 1
|r0k(s)−r0j(t)| f

′
k(s)f

′
j(t) ds dt

= 1
π

∫
`

∫
`

1
ln |w−z| dµ(w) dµ(z)

corresponds to the logarithmic energy of the signed measure µ on `, where∫
`

dµ(z) =
N∑
k=1

∫ 1

−1

f ′k(t) dt = 0,

due to Lemma 3.2. Consequently (see [13], Section I.1, and in particular Lemma 1.8),
〈Af , f〉N is positive if f ′ 6= Θ a.e. Hence, 〈Af , f〉N = 0 implies f ′(t) = Θ for almost all
t ∈ (−1, 1) and, due to f(±1) = Θ , also f(t) = Θ for all t ∈ [−1, 1]. �

For γ =
[
γj
] m
j=1
∈ Rm , define the corresponding (affine) manifold

VN
γ :=

f =
[
fk
] N
k=1
∈ VN :

nj∑
k=nj−1+1

〈fk, ψ′1k〉 = γj, j = 1, . . . ,m

 .
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Moreover, for β =
[
βj
] m
j=1
∈ Rm and f : [−1, 1] −→ RN , t 7→

[
fk(t)

] N
k=1

, we define

βf =
[
β1f1 . . . β1fn1 . . . βmfnm−1+1 . . . βmfnm

]T
.

If we set Ψ1 =
[
ψ1k

] N
k=1

and Ψ′1 =
[
ψ′1k

] N
k=1

, then the following result holds.

Theorem 3.7. The element Γ∗0 ∈ VN
γ is a solution of Problem (P) if and only if there is a

β ∈ Rm such that
AΓ∗0 = βΨ′1 . (18)

This solution is unique, if it exists.

Proof. Assume that Γ∗0 ∈ VN
γ and F (Γ∗0) = min

{
F (Γ0) : Γ0 ∈ VN

γ

}
. This implies G′(0) = 0

for G(α) = F (Γ∗0 + αf) and for all f ∈ VN
Θ \ {Θ} . Since

G(α) = F (Γ∗0) + 2α〈AΓ∗0, f〉N + α2〈f , f〉N (19)

and
G′(α) = 2〈AΓ∗0, f〉N + 2α〈f , f〉N ,

this condition gives 〈AΓ∗0,g〉ϕ,N = 0 for all g =
[
gk
] N
k=1
∈
(
L2,1
ϕ

)N
satisfying

nj∑
k=nj−1+1

〈gk, ψ′1k〉ϕ =

0 , j = 1, . . . ,m , which is equivalent to (18). On the other hand, if Γ∗0 ∈ VN
γ and β ∈ Rm

fulfil (18) and if f ∈ VN
Θ \ {Θ} , then we get from (19) for α = 1

F (Γ∗0 + f) = F (Γ∗0) + 2〈AΓ∗0, f〉N + 〈f , f〉N

= F (Γ∗0) + 2
〈
AΓ∗0 − βΨ′1, f

〉
N

+ 〈f , f〉N

= F (Γ∗0) + 〈f , f〉N > F (Γ∗0),

which also shows the uniqueness of the solution (if it exists). �

Remark 3.8. Using relation (13), equation (18) can be written equivalently as

BΓ∗0 = βΨ1 + δ, Γ∗0 ∈ VN
γ , (β ∈ Rm, δ ∈ RN ). (20)

Moreover, by applying partial integration to the integrals in (14) and taking into account
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f(±1) = Θ for f ∈ VN (see Lemma 3.2), we get

(Bf) (t) =

[
lim
ε→+0

N∑
k=1

1

π

(∫ t−ε

−1

+

∫ 1

t+ε

)
ln |r0k(s)− r0j(t)| f ′k(s) ds

] N

j=1

=

[
lim
ε→+0

N∑
k=1

1

π
fk(t− ε) ln |r0k(t− ε)− r0j(t)|

] N

j=1

−

[
lim
ε→+0

N∑
k=1

1

π
fk(t+ ε) ln |r0k(t+ ε)− r0j(t)|

] N

j=1

−

[
lim
ε→+0

1

π

N∑
k=1

(∫ t−ε

−1

+

∫ 1

t+ε

)
fk(s)

d

ds
ln |r0k(s)− r0j(t)| ds

] N

j=1

(7)
=

[
1

π

N∑
k=1

∫ 1

−1

Y0kj(s, t)fk(s) ds

] N

j=1

Hence, we obtain the identity
Bf = A0f ∀ f ∈ VN , (21)

where

(A0f)(t) :=

[
N∑
k=1

1

π

∫ 1

−1

Y0kj(s, t)fk(s) ds

] N

j=1

= −(Sf)(t) + (K0f)(t)

with (cf. (11) and (12))

(K0f)(t) :=

[
N∑
k=1

1

π

∫ 1

−1

Kkj(s, t)fk(s) ds

] N

j=1

. (22)

Note that equation (18), hence its equivalent representation one obtains from (20) and equal-
ity (21), define the Euler-Lagrange equation for the corresponding drag minimization problem.
�

The following Lemma is a consequence of the well-known relation

Sϕpϕn = −pϕ
−1

n+1, n ∈ N0. (23)

Lemma 3.9. The operator S :
(
L2
ϕ−1

)N −→ (
L2
ϕ−1,0

)N
and the operator S :

(
ϕL2,r

ϕ

)N −→(
L2,r
ϕ−1,0

)N
, r > 0, with L2

ρ,0 =
{
f ∈ L2

ρ : 〈f, 1〉ρ = 0
}

and L2,r
ρ,0 = L2,r

ρ ∩ L2
ρ,0 are invertible.

The next proposition is concerned with the solvability of (20). For this we define the
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operator

G :
(
L2
ϕ−1

)N × Rm × RN −→
(
L2
ϕ−1

)N × Rm,

(f ,β, δ) 7→

A0f − βΨ1 − δ,

[ nj∑
k=nj−1+1

〈fk, ψ′1k〉
] m

j=1

 .

Theorem 3.10. Assume that ψik ∈ C3[−1, 1] , i = 1, 2 , k = 1, . . . , N , Then,

(a) the operator A0 :
(
L2
ϕ−1

)N −→ (
L2
ϕ−1

)N
has a trivial null space, i.e.,

N(A0) =
{

f ∈
(
L2
ϕ−1

)N
: A0f = Θ

}
= {Θ} .

If furthermore, the vector valued functions
[
ψ1k(t)

] nj

k=nj−1+1
are not constant functions

on [−1, 1] for j = 1, . . . ,m , then:

(b) for every (g, γ) ∈
(
L2
ϕ−1

)N × Rm, the equation

G(f ,β, δ) = (g,γ) (24)

possesses a unique solution;

(c) equation (20) possesses a unique solution (Γ∗0,β, δ) ∈ VN
γ × Rm × RN ;

(d) Problem (P) is uniquely solvable.

Proof. Let f0 ∈
(
L2
ϕ−1

)N
and A0f

0 = Θ . Hence, Sf0 = K0f
0 ∈

(
C1[−1, 1]

)N ⊂ (L2,1
ϕ−1

)N
, due

to Lemma 3.3. By Lemma 3.9, we get K0f
0 ∈

(
L2,1
ϕ−1,0

)N
and, consequently, f0 ∈

(
ϕL2,1

ϕ

)N
=

VN . On the other hand, due to (13) and (21) (cf. also the proof of Lemma 3.6), we have

0 < 〈Af , f〉N = −〈A0f ,Df〉N ∀ f ∈ VN \ {Θ} .

This implies f0 = Θ, and (a) is proved.

Since, by Lemma 3.9, the operator S :
(
L2
ϕ−1

)N −→ (
L2
ϕ−1

)N
is Fredholm with index −N

and since, due to the continuity of the functions Kkj(s, t) (cf. Lemma 3.3), the operator K0 :(
L2
ϕ−1

)N −→ (
L2
ϕ−1

)N
is compact, also the operator A0 = −S +K0 :

(
L2
ϕ−1

)N −→ (
L2
ϕ−1

)N
is Fredholm with index −N . Hence, we conclude that the codimension of the image

R(A0) =
{
A0f : f ∈

(
L2
ϕ−1

)N}
is equal to N . Since

dim
{
βΨ1 + δ : β ∈ Rm, δ ∈ RN

}
= N +m,
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the intersection W1 := R(A0)∩
{
βΨ1 + δ : β ∈ Rm, δ ∈ RN

}
is at least m-dimensional. We

show, however, that dim W1 > m is not possible. Indeed, in that case there exist m + 1
linearly independent f j ∈ VN with

A0f
j = gj ∈

{
βΨ1 + δ : β ∈ Rm, δ ∈ RN

}
, j = 1, . . . ,m+ 1 ,

where W1 = span {g1, . . . ,gm+1} . The m× (m+ 1) homogeneous system[ n∑̀
k=n`−1+1

〈
f jk , ψ

′
1k

〉
, j = 1 : m+ 1

]m
`=1

[
αj
]m+1

j=1
=
[

0
] m
`=1

has a nontrivial solution. The respective f =
[
fk
] N
k=1

=
m+1∑
j=1

αjf
j satisfies

nj∑
k=nj−1+1

〈fk, ψ′1k〉 = 0 , j = 1, . . . ,m.

This means that f ∈ VN
Θ solves (20) with γ = Θ. By Proposition 3.7 and Remark 3.8, this

solution is unique, hence identically zero in contradiction to α 6= Θ. Therefore, f∗ 6= Θ .
Thus dim W1 = m. Let {hj : j = N + 1, . . . , N +m} denote an orthonormal basis of

W1 , which can be extended to an orthonormal basis{
hj = βjΨ1 + δj : j = 1, . . . , N +m

}
of M :=

{
βΨ1 + δ : β ∈ Rm, δ ∈ RN

}
. Set W2 := span {hj : j = 1, . . . , N} . We have

R(A0) ∩W2 = {Θ} and
(
L2
ϕ−1

)N
= R(A0) + W2 . (25)

We show that, for every (g,γ) ∈
(
L2
ϕ−1

)N × Rm , there is a unique (f∗,β∗, δ∗) ∈
(
L2
ϕ−1

)N ×
Rm × RN satisfying G(f∗,β∗, δ∗) = (g,γ) . Due to the second relation in (25), there is an

(f0,β0, δ0) ∈
(
L2
ϕ−1

)N × Rm × RN such that

Ĝ(f0,β0, δ0) := A0f
0 − β0Ψ1 − δ0 = g . (26)

The null space of the operator Ĝ :
(
L2
ϕ−1

)N × Rm × RN −→
(
L2
ϕ−1

)N
is equal to

N(Ĝ) =
{

(f ,β, δ) ∈
(
L2
ϕ−1

)N × Rm × RN : A0f ∈W1 and A0f = βΨ1 + δ
}

In view of (a), there exist uniquely determined uj ∈
(
L2
ϕ−1

)N
such that A0u

j = hj =

βjΨ1 + δj for j = N + 1, . . . , N +m. Consequently, the set of all solutions of (26) is given
by {

(f ,β, δ) =
N+m∑
j=N+1

αj(u
j,βj, δj) + (f0,β0, δ0) : αj ∈ R

}
.

12



An element (f ,β, δ) from this set solves (24) if and only if the respective αj’s fulfil

N+m∑
`=N+1

nj∑
k=nj−1+1

〈
u`k, ψ

′
1k

〉
α` +

nj∑
k=nj−1+1

〈
f 0
k , ψ

′
1k

〉
= γj , j = 1, . . . ,m . (27)

This system has a unique solution
[
αj
]N+m

j=N+1
, since otherwise there is anα0 =

[
α0
j

]N+m

j=N+1
∈

Rm \ {Θ} satisfying

N+m∑
`=N+1

nj∑
k=nj−1+1

〈
u`k, ψ

′
1k

〉
α` = 0 , j = 1, . . . ,m ,

which implies u0 :=
N+m∑
j=N+1

α0
ju

j 6= Θ and A0u
0 = β0Ψ1 + δ0 , where

β0 =
N+m∑
j=N+1

α0
ju

j and δ0 =
N+m∑
j=N+1

α0
jδ

j .

Moreover,
N+m∑
j=N+1

〈
u0
k, ψ

′
1k

〉
=

N+m∑
j=N+1

N+m∑
`=N+1

α0
`

〈
u`k, ψ

′
1k

〉
= 0 , j = 1, . . . , n .

Thus, u0 ∈ VΘ is a solution of (20). By Proposition 3.7 and Remark 3.8, this solution is
unique, hence identically zero in contradiction to α0 6= Θ . Therefore, if we denote the unique

solution of (27) by α∗ =
[
α∗j
]N+m

j=N+1
, then

(f∗,β∗, δ∗) =
N+m∑
j=N+1

α∗j (u
j,βj, δj) + (f0,β0, δ0)

is the uniquely defined solution of (24).
Assertion (c) is the special case (g,γ) = (Θ,γ) of (b), and assertion (d) is an immediate

consequence of (c), together with Proposition 3.7 and Remark 3.8. �

4 A COLLOCATION-QUADRATURE METHOD

Here, we describe a numerical procedure for the approximate solution of equation (20). For
this, we write this equation in the form (cf. (21), (22))

A0f = βΨ1 + δ, (f ,β, δ) ∈ VN
γ × Rm × RN (28)

with A0 = −S +K0 :
(
L2
ϕ−1

)N −→ (
L2
ϕ−1

)N
and

(Sf)(t) =

[
1

π

∫ 1

−1

fj(s) ds

s− t

] N

j=1

,
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as well as

(K0f)(t) =

[
N∑
k=1

1

π

∫ 1

−1

Kkj(s, t)fk(s) ds

] N

j=1

.

For every integer n ≥ 1, we are looking for an approximate solution (fn,βn, δn) in R(Pn)×
Rm×RN of (28), where fn =

[
fnk
] N
k=1

, βn =
[
βnj
] m
j=1

and δn =
[
δnk
] N
k=1

, and where by

R(Pn) we denote the image space of the orthoprojection Pn :
(
L2
ϕ−1

)N −→ (
L2
ϕ−1

)N
defined

by

Pnf =

[
n−1∑
k=0

〈fj, Uk〉ϕUk

] N

j=1

,

where Uk = pϕk denotes the normalized second kind Chebyshev polynomial of degree k. For
that, we solve the collocation equations

−(Sfn)(t`n) + (K0
nf
n)(t`n) = βnΨ1(t`n) + δn, ` = 1, . . . , n+ 1, (29)

together with

π

n+ 1

nj∑
k=nj−1+1

n∑
i=1

ϕ(sin)ψ′1k(sin)fnk (sin) = γj , j = 1, . . . ,m , (30)

where t`n = cos
(2`− 1)π

2n+ 2
and sin = cos

iπ

n+ 1
are Chebyshev nodes of first and second kind,

respectively, and where

(K0
nf
n)(t) =

[
1

n+ 1

N∑
k=1

n∑
i=1

ϕ(sin)Kkj(sin, t)f
n
k (sin)

] N

j=1

. (31)

Note that fn(t) can be written with the help of the weighted Lagrange interpolation poly-
nomials ˜̀ϕ

in(t) =
ϕ(t)`ϕin(t)

ϕ(sin)
with `ϕin(t) =

Un(t)

(t− sin)U ′n(sin)
, i = 1, . . . , n.

in the form

fn(t) =
n∑
i=1

˜̀ϕ
in(t)ξin , ξin = fn(sin) . (32)

Let Ljn , j = 1, 2 denote the interpolation operators, which associate to a function g :
(−1, 1) −→ RN the (vector) polynomials

(L1
ng)(t) =

n+1∑
`=1

Tn+1(t)

(t− t`n)T ′n+1(t`n)
g(t`n) ,

and

(L2
ng)(t) =

n∑
i=1

Un(t)

(t− sin)U ′n(sin)
g(sin) ,
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respectively, where Tn = pϕ
−1

n . Now, the system (29), (30) can be written as operator
equation

Anfn = βnL1
nΨ1 + δn, (fn,β, δ) ∈ R(Pn)× Rm × RN (33)

together with
nj∑

k=nj−1+1

〈
L2
nψ
′
1k, f

n
k

〉
= γj , j = 1, . . . ,m , (34)

where An = −Sn + Kn, Sn = L1
nSPn , and Kn = L1

nK0
nPn. The equivalence of (30) and

(34) follows from the algebraic accuracy of the Gaussian rule w.r.t. the Chebyshev nodes of
second kind. In Lemma 4.1 and Lemma 4.2, we take N = 1 , the generalization to N > 1 is
obvious. The assertion of the following lemma is well-known (see [14, Theorem 14.3.1]).

Lemma 4.1. For all f ∈ C[−1, 1], we have lim
n→∞

∥∥f − L1
nf
∥∥
ϕ−1 = 0 as well as lim

n→∞

∥∥f − L2
nf
∥∥
ϕ

=

0.

The next lemma provides convergence rates for the interpolating polynomials and will
be used in the proof of Proposition 4.4.

Lemma 4.2 ([1], Theorem 3.4). If r > 1
2
, then there exists a constant c > 0 such that, for

any real p, 0 ≤ p ≤ r and all n ≥ 1,

(a) ‖f − L1
nf‖ϕ−1,p ≤ c np−r‖f‖ϕ−1,r for all f ∈ L2,r

ϕ−1,

(b) ‖f − L2
nf‖ϕ,p ≤ c np−r‖f‖ϕ,r for all f ∈ L2,r

ϕ .

Lemma 4.3. The operator K0
n can be extended to a linear and bounded operator on

(
L2
ϕ−1

)N
such that, for ψjk ∈ C2[−1, 1], j = 1, 2, k = 1, . . . , N , we have

(a) lim
n→∞

‖Kn −K0‖(
L2
ϕ−1

)N
→
(
L2
ϕ−1

)N = 0.

(b) Moreover, a solution f ∈
(
L2
ϕ−1

)N
of Anf − βL1

nΨ1 − δ = Θ automatically belongs to
R(Pn).

Proof. By definition of K0
n and in virtue of the algebraic accuracy of the Gaussian rule, for

fn ∈ R(Pn) we have

(K0
nf
n)(t) =

[
N∑
k=1

1

π

∫ 1

−1

L2
n

[
Kkj(., t)ϕ

−1fnk
]

(s)ϕ(s) ds

] N

j=1

=

[
N∑
k=1

1

π

∫ 1

−1

L2
n [Kkj(·, t)] (s)fnk (s) ds

] N

j=1

,

which implies, that the definition of K0
n can be extended to the whole space

(
L2
ϕ−1

)N
by

(K0
nf)(t) =

[
N∑
k=1

1

π

∫ 1

−1

L2
n [Kkj(·, t)] (s)fk(s) ds

] N

j=1

.
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Using ‖f‖∞ = max {|f(t)| : −1 ≤ t ≤ 1} (the norm in the space C = C[−1, 1] of continuous

functions f : [−1, 1] −→ R) and ‖f‖∞,N :=

(
N∑
k=1

‖fk‖2
∞

) 1
2

(the norm in the space CN), we

get

‖(K0
n −K0) f‖∞,N

=
1

π

 N∑
j=1

sup
−1≤t≤1


∣∣∣∣∣
N∑
k=1

∫ 1

−1

[
L2
n [Kkj(·, t)] (s)−Kkj(s, t)

]
fk(s) ds

∣∣∣∣∣
2

 1

2

≤ 1

π

(
N∑
j=1

sup
−1≤t≤1

{
N∑
k=1

∥∥L2
nKkj(·, t)−Kkj(·, t)

∥∥2

ϕ

N∑
k=1

‖fk‖2
ϕ−1

}) 1
2

≤ 1

π

(
N∑
j=1

sup
−1≤t≤1

{
N∑
k=1

∥∥L2
nKkj(·, t)−Kkj(·, t)

∥∥2

ϕ

}) 1
2

‖f‖(
L2
ϕ−1

)N .

(35)

Since, due to Lemma 4.1 and the principle of uniform boundedness, the operator sequence

L1
n : CN −→

(
L2
ϕ−1

)N
is uniformly bounded, the last estimate together with Lemma 4.1

(applied to L2
n) leads to

lim
n→∞

∥∥Kn − L1
nK0Pn

∥∥(
L2
ϕ−1

)N
→
(
L2
ϕ−1

)N = 0 .

Again Lemma 4.1, the strong convergence of Pn = P∗n −→ I (the identity operator), and

the compactness of the operator K0 :
(
L2
ϕ−1

)N −→ CN give us

lim
n→∞

∥∥L1
nK0Pn −K0

∥∥(
L2
ϕ−1

)N
→
(
L2
ϕ−1

)N = 0 ,

and (a) is proved.
Assertion (b) is a consequence of Lemma 3.9 and relation (23). �

Theorem 4.4. Assume ψik ∈ Cr[−1, 1], i = 1, 2, k = 1, . . . , N , for some integer r > 2. Let
γj 6= 0 for all j = 1, . . . ,m , and the vector valued functions

[
ψ1k(t)

] nj

k=nj−1+1
, j = 1, . . . ,m ,

be not constant. Then, for all sufficiently large n (say n ≥ n0), there exists a unique solution
(fn∗,βn∗, δn∗) ∈ R(Pn) × Rm × RN of (33), (34). Moreover, since for the unique solution

(f∗, β∗, δ∗) of (28) we have f∗ ∈
(
ϕL2,r−2

ϕ

)N
, the following inequality holds:

(
N∑
k=1

‖fn∗k − f ∗k‖
2
ϕ−1 +

m∑
j=1

|βn∗j − β∗j |2 +
N∑
k=1

|δn∗k − δ∗k|2
) 1

2

≤ c n2−r (36)

with a constant c > 0 independent of n.
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Proof. Set X :=
(
L2
ϕ−1

)N × Rm × RN and Y :=
(
L2
ϕ−1

)N × Rm as well as

‖(f ,β, δ)‖X :=

(
‖f‖2(

L2
ϕ−1

)N +
m∑
j=1

β2
j +

N∑
k=1

δ2
j

) 1
2

and

‖(g,γ)‖Y :=

(
‖g‖2(

L2
ϕ−1

)N +
m∑
j=1

γ2
j

) 1
2

.

In view of Proposition 3.10,(b), the linear and bounded operator G : X −→ Y is invertible,
where, due to Banach’s theorem, G−1 ∈ L(Y,X) . If we denote the map

(f ,β, δ) 7→

Anf − βL1
nΨ1 − δ,

[ nj∑
k=nj−1+1

〈
fk,L2

nψ
′
1k

〉 ] m

j=1


by Gn : X −→ Y , then (fn∗,βn∗, δn∗) is a solution of (33), (34) if and only if Gn(fn∗,βn∗, δn∗) =
(Θ,γ) and, taking into account the inequality

‖βf‖2(
L2
ϕ−1

)N =
m∑
j=1

β2
j

nj∑
nj−1+1

‖fk‖2
L2
ϕ−1
≤
(

max
j=1,...,m

β2
j

)
‖f‖2(

L2
ϕ−1

)N
≤

(
m∑
j=1

β2
j

)
‖f‖2(

L2
ϕ−1

)N ,
as well as Lemma 4.1 and Lemma 4.3,(a), we get

‖(Gn − G)(f ,β, δ)‖2
Y = ‖(Kn −K0)f − β (L1

nΨ1 −Ψ1)‖2(
L2
ϕ−1

)N
+

m∑
j=1

 nj∑
k=nj−1+1

〈
fk,L2

nψ
′
1k − ψ′1k

〉2

≤ 2 ‖(Kn −K0)f‖2(
L2
ϕ−1

)N + 2 ‖β (L1
nΨ1 −Ψ1)‖2(

L2
ϕ−1

)N
+

m∑
j=1

nj∑
k=nj−1+1

‖fk‖2
L2
ϕ−1

∥∥L2
nψ
′
1k − ψ′1k

∥∥2

L2
ϕ

≤ 2 ‖(Kn −K0)‖2(
L2
ϕ−1

)N
→
(
L2
ϕ−1

)N ‖f‖2(
L2
ϕ−1

)N
+2
(∑m

j=1 β
2
j

)
‖L1

nΨ1 −Ψ1‖2(
L2
ϕ−1

)N
+
(

maxk=1,...,N ‖L2
nψ
′
1k − ψ′1k‖

2
L2
ϕ

)
‖f‖2(

L2
ϕ−1

)N
≤ α2

n ‖(f ,β, δ)‖2
X ,
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with

αn =

(
2 ‖(Kn −K0)‖2(

L2
ϕ−1

)N
→
(
L2
ϕ−1

)N +
∥∥L1

nΨ1 −Ψ1

∥∥2(
L2
ϕ−1

)N
+ max

k=1,...,N

∥∥L2
nψ
′
1k − ψ′1k

∥∥2

L2
ϕ

) 1
2

tending to zero if n tends to infinity, i.e.,

‖Gn − G‖X→Y −→ 0 . (37)

This implies that, for all sufficiently large n , the inverses G−1
n : Y −→ X exist and are

uniformly bounded in norm; moreover,

‖G−1
n − G−1‖Y→X = ‖G−1

n (G − Gn)G−1‖Y→X

≤ ‖G−1
n ‖Y→X ‖G − Gn‖X→Y ‖G−1‖Y→X ≤ c αn −→ 0 .

(38)

Note that this proves that the left hand side of (36) converges to zero, since it is equal to
‖(G−1

n − G−1)(Θ,γ)‖X.
To derive the error estimate (36), first we recall that ψik ∈ Cr[−1, 1], i = 1, 2 , k =

1, . . . , N , for some r > 2 implies, due to Lemma 3.3, the continuity of the partial deriva-

tives
∂`Kkj(s, t)

∂t`
and

∂`Kkj(s, t)

∂s`
, ` = 1, . . . , r − 2, j, k = 1, . . . , N , for (s, t) ∈ [−1, 1]2.

Consequently, each entry of
Sf∗ = −K0f

∗ − β∗Ψ1 − δ∗

belongs to ∈ Cr−2[−1, 1] ⊂ L2,r−2
ϕ−1 , i.e., f∗ ∈

(
ϕL2,r−2

ϕ

)N
in virtue of Lemma 3.9. Taking into

account the uniform boundedness of L1
n : CN −→

(
L2
ϕ−1

)N
(see Lemma 4.1) and Lemma

4.2, we get, for all fn ∈ R(Pn) (cf. (35)),

‖(Kn −K0)fn‖(
L2
ϕ−1

)N
≤ ‖L1

n(K0
n −K0)fn‖(

L2
ϕ−1

)N + ‖(L1
nK0 −K0)fn‖(

L2
ϕ−1

)N
≤ c ‖(K0

n −K0)fn‖∞,N + ‖(L1
n − I)K0f

n‖(
L2
ϕ−1

)N
≤ c n2−r

(
‖fn‖(

L2
ϕ−1

)N + ‖K0f
n‖(

L2,r

ϕ−1

)N) ≤ cn2−r ‖fn‖(
L2
ϕ−1

)N ,
where we have also used the property that K0 :

(
L2
ϕ−1

)N −→ (Cr−2[−1, 1])
N ⊂ L2,r−2

ϕ−1 is

bounded (cf. [1, Lemma 4.2]). Since ψ1k ∈ L2,r
ϕ−1 and ψ′1k ∈ L2,r−1

ϕ , k = 1, . . . , N , we obtain

(cf. Lemma 4.2) αn = O(n2−r) . Bound (36) then easily follows. �
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Remark 4.5. We recall that (see [1], Theorem 2.13) when r > 3 property f∗ ∈
(
ϕL2,r−2

ϕ

)N
implies f∗ ∈ (Cr−3[−1 + ε, 1− ε])N with 0 < ε < 1 fixed as small as one likes. Furthermore,
we note that if the assumption ψik ∈ Cr[−1, 1], r > 2, is replaced by ψik ∈ C2[−1, 1], and
dimN(A0) = 0 (cf. Proposition 3.10), from the proof of Proposition 4.4 it is seen that the
first assertion and relation (37) remain true. Thus, also in this case the left hand side of
(36) converges to zero, as n→∞.

5 NUMERICAL RESULTS

Before applying the proposed numerical method, we rewrite the final algebraic linear system
defined by equations (29) and (30) in a more explicit form (see (40)). For this, note that,

for fn =
[
fnk
] N
k=1
∈ R(Pn) ,

(Sfn) (t`n) =

[
n∑
i=1

ϕ(sin)

n+ 1

fnj (sin)

sin − t`n

] N

j=1

(see [11, Section 5]), such that

− (Sfn) (tjn) + (K0
nf
n) (t`n) =

[
1

n+ 1

N∑
k=1

n∑
i=1

ϕ(sin)Y0jk(sin, t`n)fnk (t`n)

] N

j=1

.

Hence, we have to solve the following system of equations

1
n+1

∑N
k=1

∑n
i=1 ϕ(sin)Y0kj(sin, t`n)fnk (sin)− βg(j)ψ1j(t`n)− δnj = 0 ,

j = 1, . . . , N , ` = 1, . . . , n+ 1 ,

π
n+1

∑nj

k=nj−1+1

∑n
i=1 ϕ(sin)ψ′1k(t`n)fnk (sin) = γj , j = 1, . . . ,m ,

where
g(j) = r iff nr−1 < j ≤ nr. (39)

Consequently, we can write (29),(30) as

Anξ
n = ηn, (40)

where ηn =
[
ηjn

]N(n+1)+m

j=1
=
[

0 . . . 0 γ1 . . . γm
]T ∈ RN(n+1)+m is given and, having

set
fnk =

[
fnk (s1n) . . . fnk (snn)

]
, k = 1, . . . , N,

ξn =
[
ξkn

]N(n+1)+m

k=1

=
[

fn1 . . . fnN βn1 . . . βnm δn1 . . . δnN
]T ∈ RN(n+1)+m

19



is the vector we are looking for, i.e., ξ(k−1)n+i = fnk (sin) , k = 1, . . . , N , i = 1, . . . , n ,
and ξNn+j = βnj , j = 1, . . . ,m , as well as ξNn+m+k = δnk , k = 1, . . . , N . The matrix

An =
[
ajk

]N(n+1)+m

j,k=1
is defined by

a(`−1)N+j,(k−1)n+i =
ϕ(sin)Y0kj(sin,t`n)

n+1
, j, k = 1, . . . , N, i = 1, . . . , n,

` = 1, . . . , n+ 1 ,

a(`−1)N+j,Nn+r =


−ψ1j(t`n) : nr−1 < j ≤ nr ,

0 : otherwise ,

 j, k = 1, . . . , N,

` = 1, . . . , n+ 1 ,

a(`−1)N+j,Nn+m+k =


0 : k 6= j ,

−1 : k = j ,

 j, k = 1, . . . , N, ` = 1, . . . , n+ 1 ,

aN(n+1)+j,(k−1)n+i =


π

n+ 1
ϕ(sin)ψ′1k(sin) : nj−1 < k ≤ nj ,

0 : otherwise ,


k = 1, . . . , N, i = 1, . . . , n, j = 1, . . . ,m ,

aN(n+1)+j,Nn+k = 0 , k = 1, . . . ,m+N , j = 1, . . . ,m .

Hence, the matrix An has the following block structure

An =


A11 A12 · · · A1N B1 D1

A21 A22 · · · A2N B2 D2
...

...
...

...
...

AN1 AN2 · · · ANN BN DN

C1 C2 · · · CN Θ Θ

 (41)

with, using the Kronecker-delta δj,k ,

Ajk =
[
a

(j,k)
`i

]n+1, n

`=1,i=1
=

[
ϕ(sin)Y0kj(sin, t`n)

n+ 1

]n+1, n

`=1,i=1

,

Bj =
[
b

(j)
`s

]n+1,m

`=1,s=1
=
[
−ψ1j(t`n)δg(j),s

]n+1,m

`=1,s=1
,

Ck =
[
c

(k)
ji

] m, n

j=1,i=1
=
[ π

n+ 1
ϕ(sin)ψ′1k(sin)δg(k),j

] m, n

j=1,i=1
,

Dj =
[
d

(j)
`k

]n+1, N

`=1,k=1
=
[
−δj,k

]n+1, N

`=1,k=1
,
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where g(j) is defined in (39). By Xn and Yn we denote the subspaces of X and Y , respec-

tively, defined by Xn = (ϕPn−1)N × Rm × RN and Yn = PN
n × Rm . Set ωn =

√
π

n+ 1
and

define the operators En : Xn −→ R(n+1)N+m and Fn : Yn −→ R(n+1)N+m as the maps

En : (fn,βn, δn) 7→
[
ωnf

n
1 · · · ωnf

n
N βn1 · · · βnm δn1 · · · δnN

]T
and

Fn : (pn,γn) 7→
[
ωnp

n
1 · · · ωnp

n
N γn1 · · · γnm

]T
,

where, for pn =
[
pnk
] N
k=1

, we have set pnk =
[
pnk(t1n) · · · pnk(tn+1,n)

]
and where the

space R(n+1)N+m is equipped with the usual Euclidean inner product. The operators En and

Fn are unitary operators, since, for (fn,βn, δn) ∈ Xn and ξ =
[
ξi
](n+1)N+m

i=1
, we have

〈En(fn,βn, δn), ξ〉R(n+1)N+m

= ωn

N∑
k=1

n∑
i=1

fnk (sin)ξ(k−1)n+i +
m∑
j=1

ηnj ξnN+j +
N∑
k=1

δnk ξnN+m+k

=
N∑
k=1

∫ 1

−1

fnk (s)ω−1
n

n∑
i=1

ξ(k−1)n+i
˜̀ϕ
in(s)ds+

m∑
j=1

ηnj ξnN+j +
N∑
k=1

δnk ξnN+m+k

= 〈(fn,βn, δn), E−1
n ξ〉Xn

and analogously, for (pn,γn) ∈ Yn and η ∈ R(n+1)N+m ,

〈Fn(pn,γn), β〉R(n+1)+m =
〈
(pn,γn),F−1

n η
〉
Yn

.

Hence, the spectral condition numbers of the matrices Ãn =
[
bjk

]N(n+1)+m

j,k=1
defined by

Ãnξ = FnGnE−1
n ξ for all ξ ∈ R(n+1)N+m are equal to ‖Gn‖ ‖G−1

n ‖ . Moreover, under the
assumptions of Proposition 4.4 we have (cf. (37) and (38))

lim
n→∞

cond(Ãn) = ‖G‖X→Y

∥∥G−1
∥∥
Y→X

.

Since, by setting f =
[
fk
] N
k=1

:=

[
n∑
i=1

ξ(k−1)n+i
˜̀ϕ
in

] N

k=1

, i.e., fk(sin) = ξ(k−1)n+i , we have

FnGnE−1
n ξ

= FnGn

[ ω−1
n

n∑
i=1

ξ(k−1)n+i
˜̀ϕ
in

] N

k=1

, ξnN+1, . . . , ξ(n+1)N+m


= Fn

(
ω−1
n Anf −

[
ξnN+j

] m
j=1
L1
nΨ1 −

[
ξnN+m+k

]N
k=1

,

[ nj∑
k=nj−1+1

〈
fk,L2

nψ
′
1k

〉 ] m

j=1


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=
([[

1
n+1

∑N
k=1 ϕ(sin)Y0kj(sin, t`n)fk(sin)− ωnψ1j(t`n)ξnN+g(j)

−ωnξnN+m+j

] n

`=1

] N

j=1
,
[ nj∑
k=nj−1+1

ωn

n∑
i=1

ϕ(sin)ψ′1k(sin)ξ(k−1)n+i

] m

j=1


=

([[ N∑
k=1

a(`−1)N+j,(k−1)n+iξ(k−1)n+i + ωna(`−1)N+j,Nn+g(j)ξNn+g(j)

+ωna(`−1)N+j,Nn+m+jξNn+m+j

] n

`=1

] N

j=1
,

[ N∑
k=1

n∑
i=1

ω−1
n aN(n+1)+j,(k−1)n+iξ(k−1)n+i

] m

j=1

)
,

for the entries of the matrix Ãn =
[
ãjk

]N(n+1)+m

j,k=1
we get the formulas (having in mind the

block structure (41) of An)

Ãjk = Ajk , j, k = 1, . . . , N ,

B̃j = ωnBj , j = 1, . . . , N ,

C̃k = ω−1
n Ck , k = 1, . . . , N ,

D̃j = ωnDj , j = 1, . . . , N .

This is equivalent to
Ãn = FnAnE−1

n (42)

with the diagonal matrices

En = diag
[

1 · · · 1︸ ︷︷ ︸
Nn

ω−1
n · · · ω−1

n︸ ︷︷ ︸
m+N

]
and Fn = diag

[
1 · · · 1︸ ︷︷ ︸
N(n+1)

ω−1
n · · · ω−1

n︸ ︷︷ ︸
m

]
.

Thus, we solve the system Ãnξ̃
n

= η̃n instead of (40), where η̃n = Fnηn and ξ̃
n

= Enξn . A

simple algorithm for the construction of the matrix Ãn is given here:
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ν = 0

for ` = 1 : n+ 1

for j = 1 : N

ãν+j,(k−1)n+i =
ϕ(sin)Y0kj(sin,t`n)

n+1
, i = 1 : n; k = 1 : N

for k = 1 : m

if nk−1 < j ≤ nk then ãν+j,Nn+k = −ωnψ1j(t`n)

else ãν+j,Nn+k = 0

end

for k = 1 : N

if j = k then ãν+j,Nn+m+k = −ωn

else ãν+j,Nn+m+k = 0

end

end

ν = ν +N

end

for j = 1, . . . ,m

ãN(n+1)+j,(k−1)n+i =


πϕ(sin)ψ′1k(sin)

ωn(n+ 1)
: nj−1 < k ≤ nj ,

0 : otherwise ,


i = 1 : n, k = 1 : N ,

ãN(n+1)+j,Nn+i = 0 , i = 1 : m+N

end
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Note that, assuming that the above system has a unique solution, in the case of symmetric
wings all unknown functions fnk (s) are also symmetric. Thus, we can take advantage of this
property to halve the size of the system.

The numerical method we have examined in this paper has been extensively applied
to several multiwing (symmetric) configurations, including the truss-braced wing one; see
[6, 7, 4, 5, 12]. Thus, to verify the error estimates we have derived in the previous section,
here we consider only symmetric and non symmetric biwing systems. For simplicity, in both
examples the first wing is a symmetric (bounded) interval, while the second wing is symmetric
and arbitrarily smooth in Example 1, and non symmetric with C3 degree of smoothness in
Example 2. Since for a biwing we have N = 2 and 1 ≤ m ≤ N , we will consider first the
case m = 1 and then m = 2. We recall that only in the first case the error estimate proof
(see Proposition 4.4) has been completed. When m = 1 we take γ1 = 1, while when m = 2
we set γ1 = γ2 = 0.5 in Example 1 and γ1 = 0.3, γ2 = 0.7 in Example 2.

To have a sequence of nested mesh points {sin}, we have chosen

n = 5, 11, 23, 47, 95, 191, 383.

This choice allows us to check also the (pointwise) convergence rate at these points.
In the tables below, the error estimates reported in the columns labeled (36) are obtained

by approximating the left hand side of bound (36) by the following discretization of it:

err =
√

err2
1 + err2

2, (43)

where

err2
1 =

π

M + 1

N∑
k=1

M∑
i=1

|fn∗k (siM)− fM∗k (siM)|2

and

err2
2 =

m∑
j=1

∣∣βn∗j − βM∗j

∣∣2 +
N∑
k=1

∣∣δn∗k − δM∗k

∣∣2 ,
with M >> n and siM = cos iπ

M+1
. The reference values are those obtained by applying the

numerical method with n = M = 383 or 767 or 1535, as indicated in the table headings.
In the below graphs, the two unknown functions fM∗1 , fM∗2 are drawn with the blue and

red colors, respectively.

Example 1. The parametric representations in [−1, 1] of the two wings are:

ψ11(t) = t, ψ21(t) = a, (wing 1)

ψ12(t) = 0.75 cos(θt), ψ22(t) = 0.2 sin(θt),

θt =
(
3π

8
+ 0.01

)
t+ 3π

2

 (wing 2)
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Figure 1: Example 1, a = 1,m = 1, γ = 1 (left); m = 2, γ = [0.5, 0.5] (right)
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Figure 2: Example 1, m = 1, γ = 1, a = 0 (left); a = −0.05 (right)
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In the tables below, in each column estimates are stopped before reaching the maximum
value of n, whenever the maximum accuracy is achieved.

Table 1: Example 1, a = 1,M = 383, N = 2,m = 1, γ = 1

n (36) βn∗1 δn∗1 δn∗2 βn∗1 − β∗1 | ‖γn∗ − γ∗‖ cond(Ãn)
5 6.35e-05 4.8878226e-01 2.01e-17 1.37e-16 1.12e-06 1.32e-15 2.55

11 3.51e-08 4.8878338e-01 4.38e-12 2.55
23 9.28e-14 4.8878338e-01 7.22e-16 2.55
47 5.21e-14 1.11e-16 2.55
95 2.55

191 2.55

Without preconditioning, in Table 1 we would have had

cond(An) = [2.9, 4.8, 9.1, 17.8, 35.2, 70.0].

Table 2: Example 1, a = 1,M = 383, N = 2,m = 2, γi = 0.5

n (36) βn∗1 βn∗2 δn∗1 δn∗2 |βn∗1 − β∗1 | ‖γn∗ − γ∗‖
5 6.5e-05 3.9148840e-01 7.1414539e-01 1.3e-17 2.6e-16 1.4e-06 4.2e-06

11 5.8e-08 3.9148699e-01 7.1414975e-01 6.1e-14 1.3e-11
23 1.5e-13 3.9148699e-01 7.1414975e-01 2.8e-16 5.6e-16
47 7.2e-14

Table 2’: Example 1, a = 1,M = 383, N = 2,m = 2, γi = 0.5

n 5 11 23 47

cond(Ãn) 3.67 3.67 3.67 3.67
cond(An) 5.0 8.6 15.8 30.1
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Figure 3: Example 1, a = −0.07,m = 1, γ = 1; fM∗1 (left) and fM∗2 (right)
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To see the (convergence) behavior of the problem solution as wing 1 moves, by vertical
translation, towards wing 2, we have considered the case m = 1 and let the parameter a in
ψ21(t) of wing 1 moving towards ψ22(±1) = −0.074685. Figures 1,2 and Tables 1,3,4 show
what happens when a = 1, 0,−0.05; since the graph for a = −0.07 coincides with that of
a = −0.05, we have not reported it. However, in these latter two cases, to show the behavior
of fM∗1 near the quasi-singular points ψ12(±1) = ±0.695745, and of fM∗2 near its endpoints,
in Figure 3 we have plotted a zoom of these two behaviors.

Table 3: Example 1, a = 0,M = 767, N = 2,m = 1, γ = 1

n (36) βn∗1 δn∗1 δn∗2 |βn∗1 − β∗1 | ‖γn∗ − γ∗‖ cond(Ãn)
5 4.6e-01 6.5491499e-01 -8.6e-18 -2.3e-16 3.2e-02 1.3e-15 14.2

11 7.3e-02 6.1982953e-01 2.7e-03 10.2
23 5.6e-03 6.2242333e-01 1.6e-04 10.4
47 2.1e-05 6.2257853e-01 3.3e-07 10.4
95 1.2e-08 6.2257885e-01 2.6e-11 10.4

191 2.1e-13 6.2257885e-01 1.4e-15 10.4

Table 4: Example 1, a = −0.05,M = 1535, N = 2,m = 1, γ = 1

n (36) βn∗1 δn∗1 δn∗2 |βn∗1 − β∗1 | ‖γn∗ − γ∗‖ cond(Ãn)
5 2.9e-00 7.9746486e-01 -9.1e-17 -1.2e-15 1.7e-01 2.3 e-15 62.5

11 4.7e-01 6.1610383e-01 1.3e-02 16.6
23 2.1e-01 6.2667585e-01 2.5e-03 18.5
47 2.8e-02 6.2901791e-01 2.0e-04 19.1
95 4.7e-04 6.2922391e-01 4.1e-06 18.9

191 5.1e-07 6.2921982e-01 3.7e-09 18.9
383 3.7e-11 6.2921982e-01 4.2e-15 18.9

Without preconditioning, in the the last two tables we would have had, respectively,

cond(An) = [15.4, 13.5, 19.4, 28.1, 44.3, 80.0]

and
cond(An) = [67.0, 22.1, 33.0, 48.0, 68.6, 102.7, 171.8].
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Example 2. The parametric representations of the two wings are:

ψ11(t) = t, ψ21(t) = 1, −1 ≤ t ≤ 1 (wing 1)

and (wing 2)

ψ12(t) = t, −1 ≤ t ≤ 1,

ψ22(t) =


t4

4
, −1 ≤ t ≤ 0

t4

2
, 0 < t ≤ 1.

Figure 4: Example 2, a = 1; m = 1, γ = 1 (left); m = 2, γ = [0.3, 0.7] (right)
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Table 5: Example 2, a = 1; M = 1535, N = 2,m = 1, γ = 1

n (36) βn∗1 δn∗1 δn∗2 |βn∗1 − β∗1 | ‖γn∗ − γ∗‖ cond(Ãn)

5 8.2e-03 3.9086573e-01 4.9915303e-03 -1.0269478e-02 2.8e-04 5.1e-05 4.07
11 4.5e-04 3.9058419e-01 4.9579663e-03 -1.0310741e-02 6.5e-07 2.9e-06 4.07
23 2.2e-06 3.9058482e-01 4.9606810e-03 -1.0310595e-02 1.7e-08 1.9e-07 4.07
47 1.4e-08 3.9058487e-01 4.9608572e-03 -1.0310553e-02 9.2e-10 1.2e-08 4.07
95 8.8e-10 3.9058484e-01 4.9608681e-03 -1.0310550e-02 5.5e-11 7.5e-10 4.07

191 5.5e-11 3.9058484e-01 4.9608688e-03 -1.0310550e-02 3.4e-12 4.7e-11 4.07
383 3.4e-12 4.9608689e-03 2.1e-13 2.9e-12 4.07

In Table 5, without preconditioning we would have had

cond(An) = [4.6, 6.0, 8.6, 15.9, 31.3, 62.0, 123.4].

Table 6: Example 2, a = 1,M = 1535, N = 2,m = 2, γ1 = 0.3, γ2 = 0.7

n (36) βn∗1 βn∗2 δn∗1 δn∗2 ‖βn∗ − β∗‖ ‖γn∗ − γ∗‖
5 1.0e-02 3.2236367e-01 4.4587044e-01 6.6386284e-03 -1.6329797e-02 1.4e-04 5.3e-04

11 5.7e-04 3.2222830e-01 4.4534082e-01 6.5899128e-03 -1.6369827e-02 3.8e-07 4.0e-06
23 2.8e-06 3.2222863e-01 4.4534207e-01 6.5934033e-03 -1.6369647e-02 1.8e-09 2.4e-07
47 1.8e-08 3.2222864e-01 4.4534210e-01 6.5936284e-03 -1.6369596e-02 6.9e-11 1.5e-08
95 1.1e-09 3.2222864e-01 4.4534210e-01 6.5936423e-03 -1.6369593e-02 7.1e-12 9.4e-10

191 6.8e-11 6.5936432e-03 -1.6369592e-02 4.9e-13 5.8e-11
383 4.2e-12 6.5936432e-03 -1.6369592e-02 3.1e-14 3.6e-12
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Table 6’: Example 2, a = 1,M = 1535, N = 2,m = 2, γ1 = 0.3, γ2 = 0.7

n 5 11 23 47 95 191 383

cond(Ãn) 2.60 2.60 2.60 2.60 2.60 2.60 2.60
cond(An) 3.4 6.1 11.5 22.3 43.9 87.2 173.7

Remark 5.1. In the numerical examples reported above, where, for simplicity, only the
biwing case has been considered, preconditioning does not have a significant effect on the
solution accuracy. We note however that in the last table, for the reference solution we
have cond(An)= 693.5. Furthermore, when we take the wings very close to each other, to
simulate a TBW configuration, the required value of n can be significantly higher. In such
situation, also the number of wing elements N is generally higher than 2. Thus, in that case
preconditioning could be mandatory.

6 A NEW APPLICATION AND A NEW TOPIC OF

INVESTIGATION

Let us consider a symmetric TBW configuration; for example that of Figure 5 in [12] and
partially replicated in Figure 5 for convenience. For such type of multiple wings the corre-
sponding constrained minimization problem is not well defined. First of all it is not clear
which functional spaces one should choose or define, to look for a problem solution. There-
fore, it is not clear how to derive the problem ELE. Based on the physical properties of

Figure 5: Example of possible conceptual strategies adopted to study TBW

the circulation distributions, in [12] the authors have proposed a possible definition of this
problem, whose validity seems to be confirmed by the intensive numerical testing they have
performed.
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To describe this approach, we first recall that the TBW elements never intersect, but are
locally smoothly joined. In the case of Figure 5 this is accomplished by using a local Hermite
polynomial interpolation of degree 5 (see Figure 4 in [5] or Figure 3 in [12]). Then, the TBW
configuration is decomposed into N open curves, each one being at least C3 continuous.
Of course, there are several ways of performing this decomposition. For example, in the
case of the two strategies adopted in Figure 5 we have N = 3, 4, respectively. In addition,
every single curve is conceptually imagined to be made of several basic open and smooth
elements. Let M be the total number of elements constituting the entire wing system.
Each element is identified by its parametrization interval {(αj, βj), j = 1 : M}, these being
not necessarily all distinct, and by its parametrization function. We denote the associated
(unknown) circulations by ΓMj , j = 1 : M, and the overall circulation array by ΓM . Then we
have:

Dind(ΓM) =
M∑
j=1

Dind(ΓMj ,Γ
M) and L(ΓM) =

M∑
j=1

L(ΓMj ),

where we have set (see (2.3),(2.4))

Dind(ΓMj ,Γ
M) := −ρ∞

M∑
j=1

∫ βj

αj

vMnj(ηj)Γ
M
j (ηj)dηj,

vMnj(ηj) :=
1

4π

M∑
k=1

∫ βk

αk

Γ′Mk (ξk)Yjk(ηj, ξk) dξk, αj < ηj < βj.

Note that the last integral is defined in the Hadamard finite part sense whenever rj(αj) or
rj(βj) coincides with rk(αk) or rk(βk).

Now some of the above chosen wing elements can be further split into ne coincident ele-
ments (obtaining an element of multiplicity ne), each one associated with a new (unknown)
circulation. This is the case, for example, of all strategies of Figure 5. The sum of the
individual circulations gives the circulation of the original element of multiplicity 1. Next
we assembly the new basic elements to obtain N smooth curves, each one defining an imag-
inary open wing and having a corresponding circulation. As said before, there are several
possibilities to obtain a TBW decomposition of this type, as shown in the above Figure 5.

As in Section 2, we denote these wings by `k, and the associated parametrization intervals
by (−ak, bk), k = 1 : N, ak, bk > 0; we have:

Dind(Γ) =
N∑
k=1

Dind(Γk,Γ) and L(Γ) =
N∑
k=1

L(Γk).

At this stage it is still impossible to define a proper TBW constrained minimization formu-
lation, that can then be solved. To this end, taking into account the theoretical results we
have obtained in Sections 3,4 for multiwing systems, we separate the N wings `k by trans-
lating them away, one from each other, along the z-axis by a quantity ε > 0. Having now
a multisystem of disjoint wings, the minimization problem is well-posed and we can apply
the results given in the above sections. Of course, each TBW decomposition will produce its
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solution, and in general, different decompositions will give rise to different solutions, hence
to different Dopt

ind . Let us denote these optimal terms by {Γopt
kε , k = 1 : N}, Γopt

ε and Dopt
ε .

The final crucial property one should now prove is the existence of the following limits:

lim
ε→0

Γopt
kε , k = 1 : N, lim

ε→0
Γopt
ε , lim

ε→0
Dopt
ε .

If this is so, we define these limits to be a solution of our original minimization problem.
The intensive numerical testing performed in [12] seem to confirm that indeed the above

limits exist. Most important, although we have a different solution {Γopt
k , k = 1 : N}, Γopt

for each TBW decomposition, the values of their derivatives Γ′Mj , j = 1 : M, on each TBW

element, and that of Dopt
ind , are unique. Note that the latter property follows from the first

one, since from the expression Dind(Γ) given in Section 2, by performing integration by parts
we obtain the alternative expression

Dind(Γ) =
ρ∞
4π

N∑
j=1

∫ bj

−aj

[
N∑
k=1

∫ bk

−ak
ln |rk(ξk)− rj(ηj)|Γ′k(ξk)dξk

]
Γ′j(ηj)dηj.

Although the above derivatives appear to be independent from the chosen TBW decomposi-
tion, the overall circulation Γopt depends on it. This because, being Γ′Mj uniquely defined on

each TBW element represented by the interval (αj, βj), the function Γopt
k is uniquely defined

up to an arbitrary constant. However, the endpoint vanishing property of each Γopt
k and the

continuity of the latter on `k uniquely determine the associated constants. Note that the
values of the latter depend on the TBW elements we have chosen to define `k.

A further topic of investigation is the interesting case of a TBW mixed decomposition
into open and closed wing elements.
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