In this paper we go on with the analysis of the asymptotic behavior of Lur'e-type systems with periodic nonlinearities and infinite sets of equilibria. It is well known by now that this class of systems can not be efficiently investigated by the second Lyapunov method with the standard Lur'e-Postnikov function ("a quadratic form plus an integral of the nonlinearity"). So several new methods have been elaborated within the framework of Lyapunov direct method. The nonlocal reduction technique proposed by G.A. Leonov in the 1980s is based on the comparison principle. The feedback system is reduced to a low-order system with the same nonlinearity and known asymptotic behavior. Its trajectories are injected into Lyapunov function of the original system. In this paper we develop the method of nonlocal reduction. We propose a new Lyapunov-type function which involves both the trajectories of the comparison system and a modified Lur'e-Postnikov function. As a result a new frequency-algebraic criterion ensuring the convergence of every solution to some equilibrium point is obtained.

Leonov’s method of nonlocal reduction for pointwise stability of phase systems / Smirnova, Vera B.; Proskurnikov, Anton V.; Utina, Natalia V.. - ELETTRONICO. - (2020), pp. 1-4. ((Intervento presentato al convegno 2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB) [10.1109/STAB49150.2020.9140629].

### Leonov’s method of nonlocal reduction for pointwise stability of phase systems

#### Abstract

In this paper we go on with the analysis of the asymptotic behavior of Lur'e-type systems with periodic nonlinearities and infinite sets of equilibria. It is well known by now that this class of systems can not be efficiently investigated by the second Lyapunov method with the standard Lur'e-Postnikov function ("a quadratic form plus an integral of the nonlinearity"). So several new methods have been elaborated within the framework of Lyapunov direct method. The nonlocal reduction technique proposed by G.A. Leonov in the 1980s is based on the comparison principle. The feedback system is reduced to a low-order system with the same nonlinearity and known asymptotic behavior. Its trajectories are injected into Lyapunov function of the original system. In this paper we develop the method of nonlocal reduction. We propose a new Lyapunov-type function which involves both the trajectories of the comparison system and a modified Lur'e-Postnikov function. As a result a new frequency-algebraic criterion ensuring the convergence of every solution to some equilibrium point is obtained.
##### Scheda breve Scheda completa Scheda completa (DC)
978-1-7281-6705-3
File in questo prodotto:
File
SmirnovaProskurnikovUtina-STAB2020-7.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 182.07 kB
Final09140629.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 194.08 kB
Utilizza questo identificativo per citare o creare un link a questo documento: `http://hdl.handle.net/11583/2842046`