The Artery In Microgravity (AIM) project is the first experiment to be selected for the “Orbit Your Thesis!” programme of ESA Academy. It is a 2U experiment cube designed for the ICE Cubes facility on board of the International Space Station. The experiment is expected to be launched on SpaceX-20 in early 2020. The project is being developed by an international group of students from ISAE-SUPAERO and Politecnico di Torino, under the supervision of the ISAE-SUPAERO and Politecnico di Torino staff. The experiment is a test-bench for investigating haemodynamics in microgravity focusing on coronary heart disease, the most common form of cardiovascular disease and the cause of approximately 9 million deaths every year. Coronary heart disease is caused by stenosis of the coronary artery due to the build-up of plaque. While the development of atherosclerosis is not fully understood, the primary event seems to be subtle and repeated injury to the artery walls through various mechanisms including physical stresses from flow disturbances as well as from systemic and biological risk factors. In the presence of severe stenosis, patients are treated with the implantation of one or more coronary stents, which are tubular scaffolds devoted to restore and maintain myocardial perfusion. The coronary stenting procedure is largely applied (e.g., 1.8 million stents per year implanted in USA) In view of the impact that coronary artery disease has on humans, as well as of the increasing number of people that will be involved in space flights in the future, the way astronauts in space coronary hemodynamics is affected by the absence of gravity in the presence of stenosis or of stenting needs to be investigated in depth. In addition, as most stents are metallic objects, the radiation exposure in space might interact with their surface, altering blood flow, inducing particles release and ultimately leading to stent failure. Therefore, the aim of AIM is to start studying the vascular haemodynamics in a stented and a stenosed coronary artery on Earth and in microgravity and the stent-radiation coupling. This will allow to learn about the effect gravity plays on coronary artery haemodynamics, the effects of microgravity and radiation on the performance of implantable devices and ultimately the risks of myocardial infarction to astronauts on long-distance spaceflight. The experimental setup consists of a closed hydraulic loop containing two models of a coronary artery in series. An electric pump and reservoir will control the flow of a blood-mimicking fluid through the system. One model of the coronary artery will contain a coronary stent. The pressure of the fluid will be studied along its path using a series of pressure sensors and a camera will visualise the flow. The same experiments will be repeated on the ground with the same conditions as the in-flight model for comparison. The paper will outline in detail the design and development of the AIM experiment cube and the results of testing. The full data and results will be available after the completion of the mission which is expected to be between March and June 2020.

AIM (Artery in microgravity): Design and development of an ice cubes mission / Drayson, O.; Bernardini, N.; Abderrahaman, A. B.; Cerquetani, L.; Cipolletta, A.; Ferrer, B. D.; Falcone, F.; Gabetti, S.; Genoni, M.; Torta, E.; Vagnone, F.; Audas, C.; Compin, M.; Favier, J. -J.; Lizy-Destrez, S.; Morbiducci, U.. - (2019). (Intervento presentato al convegno 70th International Astronautical Congress, IAC 2019 tenutosi a Washington DC (USA) nel 2019).

AIM (Artery in microgravity): Design and development of an ice cubes mission

Gabetti S.;Torta E.;Morbiducci U.
2019

Abstract

The Artery In Microgravity (AIM) project is the first experiment to be selected for the “Orbit Your Thesis!” programme of ESA Academy. It is a 2U experiment cube designed for the ICE Cubes facility on board of the International Space Station. The experiment is expected to be launched on SpaceX-20 in early 2020. The project is being developed by an international group of students from ISAE-SUPAERO and Politecnico di Torino, under the supervision of the ISAE-SUPAERO and Politecnico di Torino staff. The experiment is a test-bench for investigating haemodynamics in microgravity focusing on coronary heart disease, the most common form of cardiovascular disease and the cause of approximately 9 million deaths every year. Coronary heart disease is caused by stenosis of the coronary artery due to the build-up of plaque. While the development of atherosclerosis is not fully understood, the primary event seems to be subtle and repeated injury to the artery walls through various mechanisms including physical stresses from flow disturbances as well as from systemic and biological risk factors. In the presence of severe stenosis, patients are treated with the implantation of one or more coronary stents, which are tubular scaffolds devoted to restore and maintain myocardial perfusion. The coronary stenting procedure is largely applied (e.g., 1.8 million stents per year implanted in USA) In view of the impact that coronary artery disease has on humans, as well as of the increasing number of people that will be involved in space flights in the future, the way astronauts in space coronary hemodynamics is affected by the absence of gravity in the presence of stenosis or of stenting needs to be investigated in depth. In addition, as most stents are metallic objects, the radiation exposure in space might interact with their surface, altering blood flow, inducing particles release and ultimately leading to stent failure. Therefore, the aim of AIM is to start studying the vascular haemodynamics in a stented and a stenosed coronary artery on Earth and in microgravity and the stent-radiation coupling. This will allow to learn about the effect gravity plays on coronary artery haemodynamics, the effects of microgravity and radiation on the performance of implantable devices and ultimately the risks of myocardial infarction to astronauts on long-distance spaceflight. The experimental setup consists of a closed hydraulic loop containing two models of a coronary artery in series. An electric pump and reservoir will control the flow of a blood-mimicking fluid through the system. One model of the coronary artery will contain a coronary stent. The pressure of the fluid will be studied along its path using a series of pressure sensors and a camera will visualise the flow. The same experiments will be repeated on the ground with the same conditions as the in-flight model for comparison. The paper will outline in detail the design and development of the AIM experiment cube and the results of testing. The full data and results will be available after the completion of the mission which is expected to be between March and June 2020.
File in questo prodotto:
File Dimensione Formato  
IAC-19,A2,6,8,x50731.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 442.59 kB
Formato Adobe PDF
442.59 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2842038