Mmwave bands are being widely touted as a very promising option for future 5G networks, especially in enabling such networks to meet highly demanding rate requirements. Accordingly, the usage of these bands is also receiving an increasing interest in the context of 5G vehicular networks, where it is expected that connected cars will soon need to transmit and receive large amounts of data. Mmwave communications, however, require the link to be established using narrow directed beams, to overcome harsh propagation conditions. The advanced antenna systems enabling this also allow for a complex beam design at the base station, where multiple beams of different widths can be set up. In this work, we focus on beam management in an urban vehicular network, using a graph-based approach to model the system characteristics and the existing constraints. In particular, unlike previous work, we formulate the beam design problem as a maximum-weight matching problem on a bipartite graph with conflicts, and then we solve it using an efficient heuristic algorithm. Our results show that our approach easily outperforms advanced methods based on clustering algorithms.
Graph-based Model for Beam Management in Mmwave Vehicular Networks / Limani Fazliu, Zana; Chiasserini, Carla Fabiana; Malandrino, Francesco; Nordio, Alessandro. - STAMPA. - (2020), pp. 363-367. (Intervento presentato al convegno ACM MobiHoc Workshop on “Cooperative data dissemination in future vehicular networks” (D2VNet 2020) tenutosi a Online due to COVID-19 nel October 11-14 2020) [10.1145/3397166.3413469].
Graph-based Model for Beam Management in Mmwave Vehicular Networks
Carla Fabiana Chiasserini;Francesco Malandrino;
2020
Abstract
Mmwave bands are being widely touted as a very promising option for future 5G networks, especially in enabling such networks to meet highly demanding rate requirements. Accordingly, the usage of these bands is also receiving an increasing interest in the context of 5G vehicular networks, where it is expected that connected cars will soon need to transmit and receive large amounts of data. Mmwave communications, however, require the link to be established using narrow directed beams, to overcome harsh propagation conditions. The advanced antenna systems enabling this also allow for a complex beam design at the base station, where multiple beams of different widths can be set up. In this work, we focus on beam management in an urban vehicular network, using a graph-based approach to model the system characteristics and the existing constraints. In particular, unlike previous work, we formulate the beam design problem as a maximum-weight matching problem on a bipartite graph with conflicts, and then we solve it using an efficient heuristic algorithm. Our results show that our approach easily outperforms advanced methods based on clustering algorithms.File | Dimensione | Formato | |
---|---|---|---|
mobihoc_1.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
830.78 kB
Formato
Adobe PDF
|
830.78 kB | Adobe PDF | Visualizza/Apri |
Workshop_2020_Zana.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
816.33 kB
Formato
Adobe PDF
|
816.33 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2840694