Ambitious energy targets in the 2020 European climate and energy package have encouraged many stakeholders to explore and implement measures improving the energy efficiency of water and wastewater treatment facilities. Model-based process optimization can improve the energy efficiency of wastewater treatment plants (WWTP) with modest investment and a short payback period. However, such methods are not widely practiced due to the labor-intensive workload required for monitoring and data collection processes. This study offers a multi-step simulation-based methodology to evaluate and optimize the energy consumption of the largest Italian WWTP using limited, preliminary energy audit data. An integrated modeling platform linking wastewater treatment processes, energy demand, and production sub-models is developed. The model is calibrated using a stepwise procedure based on available data. Further, a scenario-based optimization approach is proposed to obtain the non-dominated and optimized performance of the WWTP. The results confirmed that up to 5000 MWh annual energy saving in addition to improved effluent quality could be achieved in the studied case through operational changes only.

Energy optimization of a wastewater treatment plant based on energy audit data: small investment with high return / Borzooei, S.; Amerlinck, Y.; Panepinto, D.; Abolfathi, S.; Nopens, I.; Scibilia, G.; Meucci, L.; Zanetti, M. C.. - In: ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL. - ISSN 0944-1344. - 27:15(2020), pp. 17972-17985. [10.1007/s11356-020-08277-3]

Energy optimization of a wastewater treatment plant based on energy audit data: small investment with high return

Borzooei S.;Panepinto D.;Scibilia G.;Zanetti M. C.
2020

Abstract

Ambitious energy targets in the 2020 European climate and energy package have encouraged many stakeholders to explore and implement measures improving the energy efficiency of water and wastewater treatment facilities. Model-based process optimization can improve the energy efficiency of wastewater treatment plants (WWTP) with modest investment and a short payback period. However, such methods are not widely practiced due to the labor-intensive workload required for monitoring and data collection processes. This study offers a multi-step simulation-based methodology to evaluate and optimize the energy consumption of the largest Italian WWTP using limited, preliminary energy audit data. An integrated modeling platform linking wastewater treatment processes, energy demand, and production sub-models is developed. The model is calibrated using a stepwise procedure based on available data. Further, a scenario-based optimization approach is proposed to obtain the non-dominated and optimized performance of the WWTP. The results confirmed that up to 5000 MWh annual energy saving in addition to improved effluent quality could be achieved in the studied case through operational changes only.
File in questo prodotto:
File Dimensione Formato  
2020_EnergyOptimizationOfAWastewate.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2020_EnergyOptimizationOfAWastewatePre-Printversion.pdf

Open Access dal 14/03/2021

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 638.12 kB
Formato Adobe PDF
638.12 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2840594