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Abstract: 1 

Ambitious energy targets in the 2020 European climate and energy package have encouraged many 2 

stakeholders to explore and implement measures improving the energy efficiency of water and 3 

wastewater treatment facilities. Model-based process optimization can improve the energy 4 

efficiency of wastewater treatment plants (WWTP) with modest investment and a short payback 5 

period. However, such methods are not widely practiced due to the labor-intensive workload 6 

required for monitoring and data collection processes. This study offers a multi-step simulation-7 

based methodology to evaluate and optimize the energy consumption of the largest Italian WWTP 8 

using limited, preliminary energy audit data. An integrated modeling platform linking wastewater 9 

treatment processes, energy demand, and production sub-models is developed. The model is 10 

calibrated using a stepwise procedure based on available data. Further, a scenario-based 11 

optimization approach is proposed to obtain the non-dominated and optimized performance of the 12 

WWTP. The results confirmed that up to 5000 MWh annual energy saving in addition to improved 13 

effluent quality could be achieved in the studied case through operational changes only. 14 

Keywords: Wastewater treatment plant; Energy efficiency; Data scarcity; Energy audit; Activated 15 

sludge model; Energy optimization; Calibration; Process optimization  16 
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Nomenclature 1 

ASM Activated sludge model 
bA Autotrophic decay rate  
BME Combined Blower and Motor Efficiency  

BNRAS Biological Nutrient Removal activated sludge  
BOD5 5-day biochemical oxygen demand 

BSM1 Benchmark Simulation Model No 1 

Cc Clarification coefficient  
COD Chemical oxygen demand 

CODs Soluble chemical oxygen demand 

CODt Total chemical oxygen demand  
Cp Heat capacity of air at constant pressure 

CSTR Completely Stirred Tank Reactor  

da Airflow per diffuser 

dd Diffuser submergence depth 
dde Diffuser density 

DO Dissolved Oxygen concentration 

e Combined blower and motor efficiency 
ECa Aeration energy consumption  

ECm Mixing energy consumption   
ECp Pumping energy consumption   
ECt Total energy consumption  
EPw Total energy produced from WAS  

EQI Effluent Quality Index 

Fc Correction factor  
Ff Fouling factor   

GHG Greenhouse gas  

HC-D High-load condition in dry-weather operational mode 
HC-W High-load condition in wet-weather operational mode 

Hd Dynamic head  

HRT Hydraulic retention time  

Hs Pumping head  
Hst Static head  

Ic Current absorption 

IMLR Internal Mixed Liquor Recycle 
K Dynamic head-loss coefficient 

Kc Proportional gain  

KOA Oxygen half-saturation index for autotrophic biomass  

MLE Modified Ludzack-Ettinger 
MLSS Mixed Liquor Suspended Solids 

NC-D Normal condition in dry-weather operational mode 

OTE Oxygen Transfer Efficiency 
PAC Performance Assessment criterion  

PD Delivered power blower  

Pe Pump efficiency 
PFL Pipe friction loss 

PI Proportional Integral  

PPUV Power Per Unit Volume of mixing 

PS Primary Sludge  
Ps Barometric pressure 
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Q Pumping flow rate  
QIMLR Internal Mixed Liquor Recirculation flowrate 

QN Normalized air flux 

QRAS Return activated sludge flowrate 

R Universal gas constant 
RAS Return Activated Sludge 

RWS Reject Water from Sludge treatment units 

SCADA Supervisory Control and Data Acquisition  
SOTE Standard Oxygen Transfer Efficiency 

SRT Solids Retention Time 

STOWA Acronym for the foundation for applied water research in 
Netherlands 

SVI Sludge volume Index 

Ta Blower inlet air temperature  

Ti Integral time  
TKN Total Kjeldahl Nitrogen  

TN Total Nitrogen 

TP Total phosphorous 
TSS Total Suspended Solid 

VS Volatile Solids 

VSS Volatile Suspended Solids 
w Mass of the airflow 

WAS Wasted Activated Sludge 

WWTP Wastewater Treatment Plant 

α The ratio of process water to clean water mass transfer 
coefficients 

ΔPd The pressure drop of the piping and diffuser downstream of 

the blower  
μA The maximum specific growth rate for autotrophic biomass  

φ Power factor 

 1 
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1. Introduction  1 

The emerging trend of water scarcity resulted from population growth, and climate change has 2 

increased pressure on water and wastewater industries. Urban water systems require a considerable 3 

amount of energy for water transportation and treatment. Hence, high energy demand can 4 

potentially become an impediment to sustainable urban areas and cause water pollution, as well as 5 

a shortage of water resources. Water and wastewater treatment plants (WWTP) are amongst the 6 

largest municipal energy consumers and thus one of the most significant contributors to 7 

greenhouse gas (GHG) emissions (Guerrini et al., 2017). To exemplify, 22,558 WWTPs are 8 

operating throughout the European Union (EU), consuming almost 15,021 GWh/year, which is 9 

more than 1% of the overall electricity consumption in the EU (Eurostat, 2013). Country-specific 10 

studies about Germany (Reinders et al., 2012) and Italy (Foladori et al., 2015) showed that 11 

electricity demand for WWTPs only accounts for almost 1% of total energy consumption in these 12 

countries. A study (US EPA, 2012) about drinking and wastewater treatment systems in the United 13 

States, proved that they account for 3 - 4% of overall energy use, which results in more than 45 14 

million tons of annual GHG emissions. From an economic point of view, energy consumption of 15 

a conventional WWTP constitutes about 25 - 40 % of entire operating costs, corresponding to the 16 

range of 0.3 – 2.1 kWh/m3 of treated wastewater (Elías-Maxil et al., 2014; Venkatesh and Brattebø, 17 

2011).  18 

The major GHGs emanating from WWTPs are carbon dioxide (CO2), methane (CH4), and nitrous 19 

oxide (N2O), which are mainly produced in microbial activities, nitrification, and denitrification 20 

stages and anaerobic digestions, respectively (Nguyen et al., 2019). Several studies focused on 21 

direct measurement and monitoring of GHGs in WWTPs (e.g., Amerlinck et al., 2016; Bellandi et 22 

al., 2018; Caivano et al., 2017; Kiselev et al., 2019), highlighting the wastewater treatment sector 23 

as an area of concern for the today's global warming issue. 24 

Overall, due to the increasing cost of energy and growing worldwide concerns about GHG 25 

emissions and climate change, the issue of energy efficiency in WWTPs has gained significant 26 

attention (Friedrich et al., 2009).  27 

Process optimization of WWTPs can significantly increase energy efficiency with meager 28 

investment and a short payback period (Descoins et al., 2012). Full-scale evaluation of any 29 

optimization strategy is an expensive and time-consuming task, which may increase the risk of 30 

violations from legislative effluent limits. As a result, these solutions are not readily accepted by 31 

operators and practitioners (Beraud, 2009). The application of available mathematical models is a 32 

potential alternative for wastewater engineers to evaluate the viability of their proposed 33 

optimization scenarios without harming the real systems. Several studies focused on model-based 34 

energy optimization of various wastewater treatment processes, including (Fikar et al., 2005; Kim 35 

et al., 2008; Leeuw et al., 1996). Fikar et al. (2005) and Leeuw et al. (1996) determined the optimal 36 

sequence of aeration cycles for conventional activated sludge systems with the use of dynamic and 37 

stochastic optimization algorithms, respectively. Kim et al. (2008) implemented the iterative 38 

dynamic programming (IDP) and activated sludge models (Henze et al., 2000) to optimize the 39 

nitrogen removal process in a sequencing batch reactor (SBR). Besides, several studies highlighted 40 
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the energy recovery potential through both chemical and thermal processes (Cano et al., 2015; 1 

Frijns et al., 2013; Funamizu et al., 2001). One of the main challenges of any optimization practice 2 

is the heterogeneity of objectives (Balku and Berber, 2006). An optimal or non-dominated solution 3 

should offer a trade-off between the economic and operational objectives in WWTPs. Finding this 4 

trade-off is the core of any optimization attempt. 5 

The main limitation of the more widespread utilization of model-based optimization of WWTPs 6 

is data scarcity. High cost and demanding workload related to experimental data and adequate 7 

sampling campaigns make the data collection process an unpleasant necessity for managing 8 

stakeholders in modeling and optimization projects (Borzooei et al., 2016). Besides, irregular and 9 

deficient sensor maintenance and cleaning, which can lead to erroneous on-line measurements, 10 

can also reduce the amount of valid data (Martin and Vanrolleghem, 2014). For an accurate study 11 

of WWTPs’ energy efficiency, several variables should be monitored continuously by the plant 12 

manager or a modeler, precisely due to their influence on efficiency trends. Hence, data scarcity is 13 

a common problem in WWTP modeling and energy optimization projects, which has been rarely 14 

addressed in scientific studies in this field. 15 

This study proposes a stepwise approach for model-based energy optimization of the biological 16 

nutrient removal activated sludge system in the largest Italian WWTP, at Castiglione Torinese, 17 

considering data quality and quantity problems encountered during the project. Following a 18 

thorough assessment of the development and calibration of the model in a previous study 19 

(Borzooei et al., 2019), the impact of the solids retention time (SRT) on various parameters 20 

involved in the performance assessment criteria (PAC) is investigated. According to the obtained 21 

results, the non-dominated operational condition is proposed to increase the plant energy 22 

efficiency, resulting in economic savings and the simultaneous improvement of pollutant removal.  23 

2. Materials and methods 24 

2.1 Castiglione Torinese WWTP 25 

The centralized Castiglione Torinese plant, located in the Northwest part of Italy, is 26 

the largest Italian WWTP. The plant has a daily operating capacity of 590,000 m3 of urban 27 

wastewater, corresponding to an organic load of 2.1 million of equivalent inhabitants, with 28 

approximately 10-15% contribution of industrial discharges. Following the preliminary 29 

treatment (grit and sand removal), the pre-treated wastewater flows into four parallel 30 

wastewater treatment modules resembling Modified Ludzack-Ettinger (MLE) activated 31 

sludge systems with primary clarifiers. The boundary condition of the modeling project 32 

was defined considering the feasibility of controlling a few operational parameters during 33 

sampling time, financial, and functional limitations. The decision was made to focus the 34 

modeling project on half of the wastewater treatment module with the most stable 35 

operational conditions. Fig.1 demonstrates the schematic of a typical half-module in the 36 

Castiglione Torinese WWTP. Further details about the plant and operational details can be 37 

found in Borzooei et al. (2019). 38 

 39 
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Fig. 1 The scheme of a typical wastewater treatment a half-module at Castiglione Torinese WWTP   8 

2.2 Data collection  9 

2.2.1 Sampling and measuring campaigns  10 

The data collection was initiated with a collection of the routinely recorded data including, 24 h 11 

flow proportional composite samples from 2009 to 2016, physical characteristics of the treatment 12 

units, the design, and operational data. Following the analysis of the available data, field 13 

measurements were conducted to estimate internal mixed liquor recirculation (IMLR) and return 14 

activated sludge (RAS) flow rates. The COD fractionation of influent wastewater was performed 15 

according to the Dutch Foundation for Applied Water Research (STOWA) protocol (Hulsbeek et 16 

al., 2002). The daily composite samples were collected from the inlet and outlet of the half-module 17 

on four working days. Four main fractions, namely, readily (Ss), slowly (Xs) biodegradable COD, 18 

soluble (SI), and particulate (XI) inert COD, were identified. A detailed description of the 19 

fractionation along with justification of the minor modifications made to the original protocol can 20 

be found in Borzooei et al. (2019). Furthermore, an intensive 20-day sampling campaign, from 21 

September 26th to October 21st, 2016, was carried out for this study. The grab samples were 22 

collected from the inlet and outlet of each treatment unit. A lag time, according to the average 23 

hydraulic retention time (HRT) of the unit, was set between the two following sampling points. 24 

Samples were collected from RAS at a specific time during each day. Grab samples were further 25 

analyzed based on the IRSA methodology (IRSA, 1994) and the concentration of total COD 26 

(CODt), soluble COD (CODs), supernatant COD (CODsup), total suspended solids (TSS), total 27 

nitrogen (TN), ammonium (NH4) and nitrate (NO3) were measured. CODs was measured from the 28 

filtered and flocculated samples by 0.45μm filters and Zinc hydroxide [Zn (OH)2]. All available 29 

online measurements, including waste activated sludge (WAS) and primary sludge (PS) flow rates, 30 

were collected from the Supervisory Control and Data Acquisition (SCADA) system. The 31 

performance of sensors installed in the module was evaluated by grab sampling results as well as 32 

the real-time measurement with a portable device (Hach HQ30D portable meter). Finally, a 2-day 33 

composite sampling campaign with 2-hour intervals was conducted, in which samples were 34 

collected at the inlet and outlet of the half-module. 35 

 36 
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2.2.2 Electrical energy consumption 1 

An inventory of all the electro-mechanical devices was made at an initial stage to obtain the energy 2 

consumption data. Using the plant tele-control system, all the main electro-mechanical instruments 3 

were included in the survey except for electrical valves, for which energy consumption was 4 

assumed negligible (Panepinto et al., 2016). Further, parameters such as power, voltage, and power 5 

factor were collected from the label of each electro-mechanical device.  Operating time for each 6 

instrument was estimated by the use of the information available in SCADA and the data provided 7 

by technical staff. Digital Multimeter (Voltcraft VC280) equipped with a current clamp (CLA-8 

40VC200) was used to measure the current absorption (Ic) of treatment units. Since the engines 9 

are three-phase systems, three measurements were conducted to estimate the Ic for each instrument. 10 

The absorbed power of each device (P) was calculated according to Eq.1. 11 

𝑃 = √3 . 𝑉. 𝐼𝑐̅ . cos 𝜑                         (Eq.1) 12 

where 𝐼𝑐̅ is the average of three Ic measurements, V is the voltage (set to 360 V), and φ is the power 13 

factor for each instrument. In a few cases, P was directly measured by the use of the ammeter 14 

(PCM1, PCE instruments).  15 

 16 

2.3 Model development  17 

In this study, a model was developed in the CN library of the wastewater treatment process 18 

simulator (GPS-X ver. 6.5.1) (Snowling, 2016) to mimic and simulate the removal of carbon and 19 

nitrogen components in the plant. Although chemical phosphorus removal is performed by dosing 20 

ferric chloride solution (FeCl3) into the RAS stream, it was excluded from modeled processes due 21 

to data scarcity. Hence, ASM1 was found as the best choice for the case of this study. The plant 22 

characteristics, including liquid temperature, blower inlet temperature, and site barometric 23 

pressure, were adjusted according to collected data. In the absence of tracer measurements, the 24 

“tanks-in-series” approach and an empirical formula proposed by (Murphy and Boyko, 1970) were 25 

employed to investigate the mixing regimes in aeration units. As a result, one continuous stirred-26 

tank reactor (CSTR) was considered for each aeration unit and anoxic tank. An ideal, zero-27 

dimensional, nonreactive clarifier model (removal efficiency by concentration) (Snowling, 2016) 28 

and a pre-compiled, one-dimensional flux dynamic, non-reactive secondary clarifier model 29 

(Takács et al., 1991) were implemented. For simplification purposes, three secondary clarifiers in 30 

the half-module were modeled as a single flat bottom circular clarifier with accumulated volume, 31 

with an assumption of an equal hydraulic load. Given that no data on settling parameters were 32 

available, the correlation model (Snowling, 2016) was implemented. The model implemented for 33 

this study includes three theoretical settling parameters in Vesilind, hindered, and flocculent zones, 34 

which are correlated to two intelligible parameters, namely, sludge volume index (SVI) and a 35 

clarification factor (cf). The sludge volume index links to the thickening function at the bottom of 36 

the clarifier, and clarification factor calibrates the clarification function (Snowling, 2016). The 37 
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reactive nature of secondary clarifiers was confirmed by nitrate removal (2 mg/l on average) 1 

measured during the sampling campaign and modeled by placing a virtual anoxic CSTR in the 2 

RAS stream. The volume of the virtual tank was defined as an estimated volume of the sludge 3 

blanket, approximately 50% of VSC. Furthermore, all the available physical and operational 4 

parameters were adjusted in the simulator according to the data obtained from the Castiglione 5 

Torinese plant.  6 

For modeling of the aeration system, the depth and volume of the basins as well as the physical 7 

properties of the diffusers were adjusted, and the standard oxygen transfer efficiency (SOTE) of 8 

each tank was calculated according to an empirical correlation proposed by (Hur, 1994):  9 

𝑆𝑂𝑇𝐸 = 𝐴1 + 𝐴2. 𝑑𝑎 + 𝐴3. 𝑑𝑎
2 + 𝐴4. 𝑑𝑑 + 𝐴5. 𝑑𝑑𝑒        (Eq.2) 10 

where da is the airflow per diffuser, dd is the diffuser submergence depth, dde is the diffuser density 11 

and A1 – A5 are regression parameters. These regression parameters were obtained from an 12 

extensive iterative adjustment and re-estimation process to reach the best fit of simulated and 13 

recorded air flowrate. Finally, a proportional-integral (PI) controller was used to regulate the 14 

airflow pumped to each basin based on dissolved oxygen (DO) measurements. 15 

The delivered power blower (PD) in the aeration tanks was evaluated according to the adiabatic 16 

compression equation (Mueller et al., 2002), as follows: 17 

𝑃𝐷 =
𝑤𝑅𝑇𝑎

𝐾
[(

𝑃𝑑

𝑃𝑎
)

𝐾̅

− 1]              (Eq.3) 18 

where w is the mass of the airflow, R is the universal gas constant (8.314 J⋅mol−1⋅K−1), Ta is the 19 

blower inlet air temperature (℃) which was measured during the sampling period and 𝐾 is equal 20 

to R/Cp, where Cp is the heat capacity of air at constant pressure. In this study, 𝐾 is assumed to be 21 

0.283 based on U.S standard air. Pd is the discharge pressure of the blower (kPa), which was 22 

calculated from Eq. 4:  23 

𝑃𝑑 = 𝑃𝑠 + 𝑔. 𝑑𝑑 + 𝛥𝑃𝑑                   (Eq.4) 24 

where g is the gravity acceleration (9.81 m/s2), ΔPd is the pressure drop of the piping and diffuser 25 

downstream of the blower, and Ps is the barometric pressure. The absolute pressure upstream of 26 

the blower (kPa) (Pa) is the difference between Ps and pressure drop of the inlet filters and piping 27 

of the blower (ΔPa). Finally, the wire power consumed by the blowers to deliver the required air 28 

(PW) was calculated by applying an overall efficiency coefficient for all mechanical equipment 29 

used in the aeration system (i.e., blowers, motors, gearbox, etc.) (e) according to Eq. 5. 30 

𝑃𝑊 =
𝑃𝐷

𝑒
                   (Eq. 5) 31 

The fixed speed pump model was implemented for modeling of the pumping systems in different 32 

treatment units. The model can dynamically estimate the pumping head and efficiency by using 33 

the pump characteristic curves under different flow rates. The required pumping head (Hs) was 34 
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calculated by summing up the static head (Hst), the actual lift between suction and discharge point, 1 

and the dynamic head (Hd). The Hd  was calculated from Eq.6: 2 

𝐻𝑑 = 𝐾. 𝑄2          (Eq.6) 3 

where Q is the pumping flow rate, and K is the dynamic head-loss coefficient, which can be 4 

estimated by curve fitting exercised on a set of given Q and Hd values. The friction losses in Hd 5 

are due to wastewater flow through the piping system, including valves and fittings (Amerlinck et 6 

al., 2012). As the last energetic contribution, the energy consumption of mechanical mixing 7 

operations was modeled by considering the power per unit mixing volume (PPUV) (kW/m3) 8 

parameter. Additionally, the energy consumption of the external pumps and rakes working in 9 

secondary clarifiers was modeled as a constant miscellaneous power usage equal to 90 kWh/d.  10 

 11 

2.4 Model calibration   12 

An iterative, four-step calibration procedure (Borzooei et al., 2019) was implemented to 13 

fine-tune the model parameters. The most sensitive parameters were initially selected based 14 

on calibration protocols, full-scale observations, and sensitivity analysis, using a one-15 

variable-at-a-time approach. These parameters were further adjusted by the use of the 16 

Nelder-Mead simplex (polyhedron) algorithm (Nelder and Mead, 1965) and following a 17 

specific order to compensate for the correlational effect of adjusted parameters on each 18 

other. In case of encountering any identifiability issues in parameter estimation phase in 19 

which more than one combination of model parameters would become a good fit for the 20 

observed data set, the realistic set of parameters was selected based on the project objectives 21 

and the plant practical conditions (Kristensen et al., 1998). Influent, biokinetic, primary, 22 

and secondary clarifier sub-models were calibrated by adjusting 11 parameters in the 23 

model. The aeration process was fine-tuned by adjusting the α factors (ratio of process 24 

water to clean water mass transfer coefficients) to improve the fit between recorded and 25 

modeled DO and airflow data. Furthermore, a linear proportional-integral (PI) controller 26 

was implemented to regulate the airflow pumped to each basin based on the DO 27 

measurements. The controller was tuned by adjusting the DO setpoint, proportional gain 28 

(Kc), and integral time (Ti). Two parameters of the pressure drop in piping and diffuser 29 

downstream of the blower (ΔPa) and the combined blower and motor efficiency (e), were 30 

adjusted for calibration of the aeration energy model in three aeration units. Besides, the 31 

mixing energy consumption model in the anoxic tank was calibrated by tuning the PPUV. 32 

Finally, to calibrate the pumping energy consumption models for the primary clarifier (PS 33 

pumping system), aeration units (IMLR pumping system) and the secondary clarifier (WAS 34 

and RAS pumping systems), pump efficiency (Pe) and pipe friction loss (PFL) parameters 35 

were adjusted. 36 

 37 

 38 

 39 
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2.5 Performance assessment criteria  1 

One of the main challenges for the optimization of WWTPs is defining a proper evaluation system, 2 

which contains all the essential and relevant indicators such as effluent quality, energy 3 

consumption, and greenhouse gas emissions. In this study, two types of effluent quality-based and 4 

energy-based performance assessment criteria (PAC) were considered. For the former type, 5 

average values and dynamic patterns of effluent COD, TSS, TN, N-NH4, N-NO3, and TKN 6 

concentrations were obtained following each simulation. In addition, the number of times and 7 

percentage of the time in which the effluent concentrations violated the effluent quality constraints 8 

were identified during the studied period. The effluent quality constraints of EU Directive 9 

91/271/EEC (EEC Council, 1991) were considered in this study. However, it should be noted that 10 

the Castiglione Torinese WWTP is following the limits of Italian environmental directives (e.g. 11 

D. lgs. 152/2006).  Moreover, in real practice, the final effluent of each biological treatment 12 

module is sent to final filtration units, where it is divided over 27 multilayer sand and anthracite 13 

coal filtration units. To reduce the complexity of the modeling project and to focus this study on 14 

the optimization of the secondary treatment units only, both abovementioned issues were not 15 

considered. Hence, the real energy consumption and final effluent concentrations are, respectively, 16 

higher and lower in comparison to what is obtained in this study. 17 

Furthermore, the instantaneous effluent quality index (EQI) and moving average effluent quality 18 

index (EQIa) (kg pollution per unit time) were estimated based on the expressions proposed in the 19 

COST simulation benchmark (Copp, 2002). The net instantaneous effluent quality index (EQIn) 20 

and moving average net effluent quality index (EQIn-a) (kg pollution per unit time) representing 21 

the weighted pollution load above the effluent limitations, were calculated based on Eq. 7 and 8:   22 

𝐸𝑄𝐼𝑛 = 𝑄𝑒(𝑡). ∑ 𝑤𝑖 . max[0, (𝐶𝑖(𝑡) − 𝐶𝑖,𝑙𝑖𝑚𝑖𝑡)]𝑛
𝑖=1     (Eq. 7) 23 

𝐸𝑄𝐼𝑛−𝑎 =
1

𝑇.1000
 ∫ 𝑄𝑒(𝑡) ∑ 𝑤𝑖 . max[0, (𝐶𝑖(𝑡) − 𝐶𝑖,𝑙𝑖𝑚𝑖𝑡)]𝑛

𝑖=1
𝑡+𝑇

𝑡
. 𝑑(𝑡)  (Eq. 8) 24 

where T is the period considered for the moving average calculation (d), 𝑄e(𝑡) is the effluent flow 25 

rate time function (m3/d), n is the number of effluent quality parameters, C𝑖(𝑡) and C𝑖,limit are the 26 

effluent concentration-time function (g/m3) and limits respectively, and 𝑤𝑖 is the weight factor of 27 

the parameter i. Five effluent quality parameters (n = 5), namely, BOD5, COD, TSS, TKN, and 28 

NO3 were considered in estimating the effluent quality indexes. Corresponding weights were 29 

adopted from the extended version of Benchmark Simulation Model No.1 (Nopens et al., 2010), 30 

where the higher TKN weight factor (WTKN = 20) was proposed in comparison to NO3 (WNO3 = 31 

10) to consider the higher ecological and toxicological impact for receiving water bodies of 32 

ammonia compared to nitrate (Camargo and Alonso, 2006). 33 

The energy-based PAC contains estimations of the cumulative aeration (ECa), mixing (ECm), 34 

pumping (ECp), and total energy consumption (ECt) in the simulation period. Besides, the amount 35 

of total energy produced from WAS (EPw) was estimated following the stepwise procedure 36 

presented in Fig. 2.  37 

 38 
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 1 

 2 

 3 

 4 

 5 

Fig. 2 Stepwise procedure for estimating the energy production from waste activated sludge (WAS) 6 

It should be noted that primary sludge (PS) was excluded from this methodology since, in the SRT 7 

scenario analysis (see section 2.6), PS flow pattern was constant. The proposed methodology 8 

hypothesizes that the biogas production from the WAS is directly linked to the amount of Xs 9 

(slowly biodegradable substrate) and Xbh (active heterotrophic biomass) fractions since they are 10 

the primary biodegradable sources of COD in WAS (Martinello, 2013). An equal biodegradability 11 

between Xbh and Xs, and complete hydrolysis and transformation of Xbh into Xs in the sludge 12 

treatment process were assumed in the methodology.  13 

In the first step, the total mass of Xs+Xbh (Mx) was measured for the simulation time. Furthermore, 14 

in order to estimate the specific biogas production rates, results presented in (Ruffino et al., 2015) 15 

were implemented. (Ruffino et al., 2015) investigated the performance of mechanical and low-16 

temperature thermal pre-treatments for improving the efficiency of anaerobic digestion carried out 17 

on WAS of the Castiglione Torinese WWTP. It obtained specific biogas production rates of 18 

untreated samples between 0.234 and 0.263 Nm3/KgVS.  19 

Therefore, the specific biogas production rate of 0.25 Nm3/KgVSS was considered in this 20 

study. Likewise, a XS/VSS ratio of 1.42 was assumed, as reported in (Takács and Vanrolleghem, 21 

2006). The same ratio can be applied for Xbh, considering the complete hydrolysis assumption. The 22 

specific gas production was calculated as 0.355 Nm3 biogas/kg (XS+Xbh). A calorific value equal 23 

to 6.25 kWh/m3 (Banks, 2009), and 42 % of electricity production efficiency were assumed in this 24 

study. Finally, the produced energy from biogas was calculated from Eq. 9. 25 

𝐸𝑃𝑤(𝑘𝑊ℎ) = 𝑀𝑥 ×
0.355 𝑁𝑚3𝑏𝑖𝑜𝑔𝑎𝑠

𝑘𝑔(𝑋𝑠+𝑋𝑏ℎ)
×

6.25 𝑘𝑊ℎ

𝑁𝑚3
× 0.42         (Eq. 9) 26 

For each simulation period, an accumulated EPw was calculated and reduced from ECt to obtain 27 

total net energy consumption (ECn). 28 

2.6 Process optimization   29 

The SRT or mean cell retention time (MCRT) represents the time that microorganisms remain in 30 

the system and reproduce or regenerate. Given that various types of microorganisms have distinct 31 

regeneration times, the SRT duration can play a significant role in their proliferation or washing 32 

out of the system. SRT is usually considered to be the main control parameter in biological 33 

wastewater treatment systems. Conducting a model-based investigation to measure the impact of 34 
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changing SRT on existing WWTP performance is an alternative that is less demanding in terms of 1 

time, costs, safety, and speed in comparison to real-world practice. Several model-based 2 

optimization attempts have been reported finding the optimum value for the SRT in operating AS 3 

systems (Coen et al., 1998; Salem et al., 2002). 4 

In this study, a PI controller was added to the calibrated model in order to control the SRT around 5 

a pre-defined value by manipulating the WAS flow rate. Several dynamic simulations were 6 

conducted under various SRT values (10, 15, 20, 25, 30, 35, and 40 days). According to real plant 7 

experience, it takes around 3-4 SRTs for a WWTP to respond to any changes in operational 8 

parameters (Dotro et al., 2017). Therefore, to reduce the impact of initial conditions and obtain 9 

realistic simulation results, steady-state simulations were conducted for 100 days (3 times the 10 

average SRT in the ongoing plant operational condition) with each modified SRT value. The 11 

obtained results and concentrations from the steady-state runs were further used as the initial 12 

conditions for the dynamic simulations.  13 

The proportional relation between SRT and oxygen transfer efficiency (OTE) in aeration units, 14 

related to the degree of treatment and removal of oxygen transfer reducing contaminants (e.g., 15 

surfactants) were first reported in EPA (1989). In this study, given that no information about OTEs 16 

on aeration units was available, it was decided to estimate the impact of SRT on α values using the 17 

empirical relations reported in Rosso et al. (2005). Analyzing the data sets collected from 372 18 

different flux-averaged off-gas measurements in 30 plants in the United States for 15 years, Rosso 19 

et al. (2005) reported statistical relations among various types of diffusers, aeration tank 20 

geometries, airflow rates, SRT and OTE. Firstly, for each aeration unit, normalized air flux (QN) 21 

was estimated from Eq.10. 22 

𝑄𝑁 =
𝑄𝑎

𝐷𝐴 .𝑁𝐷.𝑍
                              (Eq. 10) 23 

where Qa is the airflow rate in aeration units (m3/s), DA is a diffuser specific area (m2), ND is the 24 

number of diffusers in aeration unit, and Z is diffuser submergence (m). Secondly, considering the 25 

average SRT of the studied module (SRT ≈ 30 d), the α value (αe) was estimated from linear 26 

logarithmic functions proposed in (Rosso et al., 2005). The αe values were further compared with 27 

numerically calibrated α values (αc) (see section 2.4), and three correction factors (Fc) were 28 

introduced accordingly. Finally, assuming the same QN value, the corrected α values (αCo) were 29 

calculated by multiplying the αe by Fc for each SRT scenario. Following the abovementioned 30 

procedure, several dynamic simulations were performed under different SRT scenarios and results 31 

were compared in terms of parameters in the PAC. Fig.3 shows a comprehensive overview of the 32 

methods implemented in this study.  33 
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 1 

 2 

Fig. 3  A comprehensive schematic of methods implemented in this study  3 

 4 

3. Results and discussion  5 

3.1 Data collection and practical challenges  6 

An irregular discharge of reject water from sludge treatment units (RWS) into the studied half-7 

module, as well as two extreme wet-weather events, occurred during the period of sampling 8 

campaign. Therefore, the dataset was partitioned into two main periods: 11-days normal operating 9 

conditions in dry weather (NC-D) and 9-days high load operating conditions in wet weather (HC-10 

W), in which a discharge of RWS and a massive rain event occurred. During the 2-day dynamic 11 

sampling campaign, the discharge of RWS was recorded in dry weather conditions (HC-D). 12 

Partitioned results highlighted that the influent concentrations recorded in NC-D were almost 13 

doubled or tripled in HC-D operational mode. Moreover, the dilution effect of a wet-weather event 14 

on influent concentrations was observed, comparing the results recorded in HC-D and HC-W 15 

modes. Due to the high deviation of influent concentrations in various operational modes, the data 16 

collected in the NC-D was further elaborated for performance investigation of the treatment units 17 

(Borzooei et al., 2017) and model calibration (Borzooei et al., 2019). Performing measurements of 18 

primary sludge flow rate and its pumping energy have proved to be a challenging task, given that 19 

the only available relevant data were the sludge levels in the repository sumps and the on/off 20 
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patterns of two automated and modulating control valves sending the sludge to the corresponding 1 

pre-thickeners. The flowmeter was installed at the entrance of a receiving pre-thickener to measure 2 

the amount of primary sludge entering the system. However, the number of active pre-thickeners, 3 

their capacities, number of receiving pre-thickeners, both primary and secondary sludge, as well 4 

as the corresponding pre-thickeners of each primary clarifier, were changing continuously during 5 

the operational period of the plant. Finally, operators were updated and instructed to keep 6 

operational parameters constant during the period of the sampling campaign.  7 

While studying the pumping patterns of the WAS during the sampling period, it was found that 8 

the WAS flow rate was regularly changed by operators based on the functional capacity of pre-9 

thickeners in sludge treatment lines; as a result, its pumping pattern was changed on an hourly 10 

basis. To calculate the SRT of the system, the average WAS flow rate was considered; however, 11 

for the model development and calibration, the dynamic patterns were considered instead. 12 

Furthermore, a discrepancy between grab sampling results and available DO and NH4 sensor 13 

readings due to sensor failure were observed in the aeration units. Dead zones, floating sludge, and 14 

coarse bubbles or bulk air emission were observed on the surface of the aeration tanks caused by 15 

diffusers’ relocation, fouling, and membrane overstretching and/or tearing. Both issues and their 16 

impacts on model development and calibration processes were addressed in detail in Borzooei et 17 

al. (2019). The energy consumption of each treatment unit was estimated by multiplying the 18 

calculated power (P) from Eq.1 to its operating time. The electro-mechanical equipment and 19 

operating devices were further grouped and classified in homogeneous categories. The results of 20 

the energy audit are provided in Fig. 4.  21 

 22 

Fig. 4 Energy audit data Energy Consumption the wastewater treatment module at Castiglione Torinese WWTP  23 

As seen in Fig. 4, the highest fraction of energy uptake is in the aeration process in biological 24 

oxidation units (over 75%), followed by pumping and operational energy consumption in the 25 

secondary clarifiers.  Considering the high-energy use of aeration units, significant energy saving 26 

Primary clarifier
350 kWh/d

Anoxic unit
765 kWh/d

Aeration units
12120 kWh/d
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2060 kWh/d

Pumping Mixing
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can be obtained by operating the aeration system to match as closely as possible the real oxygen 1 

demand of the process. This highlights the importance of finding the optimum SRT on the energy 2 

consumption of the WWTP.   3 

3.2 Model calibration and simulation 4 

The model was calibrated under dynamic conditions with the data originating from both 5 

laboratory and sensor readings collected in the NC-D operational mode following the 6 

approach presented before. The initial fractions of organic matter in the influent wastewater 7 

were identified following the standard Dutch guidelines (Roeleveld and Van Loosdrecht, 8 

2002). The average contribution of individual ASM1 components to total COD was found 9 

as follows: SI = 1.1%, Ss = 9.1%, Xs = 44 %, XI = 45.8 %. A total number of 8 model 10 

parameters were adjusted to calibrate influent, aeration, clarification, and biokinetic sub-11 

models. After modifying the results obtained from the COD fractionation method, the 12 

influent model was cali 13 

brated by increasing particulate COD (XCOD) to VSS ratio, based on the measurement of 14 

the CODt and MLVSS in the aeration tanks. The primary clarifier model was calibrated by 15 

the reduction of the removal efficiency coefficient from its default value.  16 

Secondary clarifiers were calibrated by adjusting Cc and SVI based on TSS concentration 17 

measured at final effluent and RAS, respectively. Further, assuming the fouling factor (Ff) 18 

equal to 1, aeration models were calibrated by adjusting α values to obtain the best fit 19 

between measured and modeled DO and airflow rate at each aeration unit. Finally, the 20 

maximum specific growth rate for autotrophic biomass (μA), oxygen half-saturation index 21 

for autotrophic biomass (KOA), and autotrophic decay rate (bA) were adjusted to calibrate 22 

biokinetic models. Details about the calibration practice can be found in (Borzooei et al., 23 

2019). The results of sensitivity analysis in the calibration of pumping energy consumption 24 

sub-models showed almost the same amount of sensitivity for both pump efficiency (Pe) 25 

and pipe friction loss (PFL) in two different pumping units considered in the model.  26 

Consequently, since no practical information was available about both parameters, one of 27 

the obtained combinations in the parameter estimation process was selected based on 28 

engineering judgment.  29 

On the other hand, in the calibration of the aeration energy models, combined blower and 30 

motor efficiency (e) carried a stronger influence than the pressure drop in piping and 31 

diffuser downstream of the blower (ΔPa), as a result initially the e parameter was adjusted 32 

followed by ΔPa. Adjusted energy-related parameters and the modeling results are tabulated 33 

in Table 1.Comparing the energy audit and simulation results, it can be observed that model 34 

predictions are in relatively good agreement with energy audit data. 35 

 36 

 37 

 38 

 39 

 40 
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Table 1. Adjusted energy-related parameters and modeling results in the calibration process 1 

Parameter definition  Symbol unit value 

Pumping energy     

Pump efficiency primary clarifier  Pe, P - 0.12 

Pipe friction loss primary clarifier PFL, P m 25 
Pump efficiency of IMLR Pe, MLR - 0.65 

Pipe friction loss of IMLR PFL, MLR m 6 

Pump efficiency of WAS Pe, WAS - 0.2 

Pipe friction loss of WAS PFL, WAS m 10 
Pump efficiency of RAS Pe, RAS - 0.4 

Pipe friction loss of RAS PFL, RAS m 2.5 
Mixing energy     
Power per unit volume for aeration tanks  PPUV, Ar W/m3 0.01 

Power per unit volume for the anoxic tank  PPUV, An W/m3 2.5 

Aeration energy     
Pressure drop in piping and diffuser Downstream 

of blower for 3 aeration units 
ΔPa atm 0.08 

Combined blower and motor efficiency  e - 0.25 

Pumping energy in primary clarifier  - kWh/d 369 

Mixing energy in Anoxic tanks - kWh/d 810 

Aeration and pumping energy in aeration units  - kWh/d 13138 

Pumping and miscellaneous energy in 

secondary clarifiers 
- kWh/d 1988 

Total energy consumption ECt kWh/d 16305 

 2 

3.3 Model-based process optimization  3 

 Several dynamic simulations were performed under various SRT values (10, 15, 20, 25, 30, 35, 4 

and 40 days). To estimate the impact of various SRTs on the α values, the statistical relation 5 

reported in Rosso et al. (2005) was used. For three aeration units, a normalized air flux (QN) and 6 

estimated α (αe) were calculated. Comparing the calibrated α (αc) with αe values, three correction 7 

factors (Fc) were identified. The results are tabulated in Table 2. 8 

 9 
Table 2: Results of correction of α values 10 

Parameter 
Aeration 

unit 1 

Aeration 

unit 2 

Aeration 

unit 3 

αc 0.49 0.51 0.48 

QN 0.00126 0.00102 0.00127 

αe 0.63 0.64 0.63 

FC 0.78 0.79 0.76 

 11 

Finally, assuming the same QN value, corrected α (αCo) values were calculated by 12 

multiplying the αe by Fc. Obtained αCo values of aeration units for SRT scenarios are 13 
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demonstrated in Fig. 5. To better illustrate the αCo values’ trend, logarithmic best-fit curved 1 

lines were used, as shown in Fig. 5. 2 

 3 

 Fig. 5 The Corrected ratio of process water to clean water mass transfer coefficients (α) for various SRTs 4 

After adjusting the α values in the calibrated model, a series of dynamic simulations were 5 

performed under various SRT scenarios and all PAC parameters were identified. Following each 6 

simulation, average values and dynamic patterns of effluent COD, TSS, TN, N-NH4, N-NO3, and 7 

TKN concentrations were investigated. Box-and-whisker plots of TSS, COD, NH4 and NO3 8 

effluent concentrations were examined for each SRT scenario (Fig. 6). The upper and lower boxes 9 

show the locations of the first and third quartiles (Q1 and Q3) and the lines across the box represent 10 

the mean. The whiskers lines represent the range between the lowest and highest observations in 11 

the region defined by Q1 − 1.5 (Q3 − Q1) and Q3 + 1.5 (Q3 − Q1). For clarity purposes, the limited 12 

number of individual points with values outside this range were not plotted. 13 
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 1 

Fig. 6 Variations of TSS (a), COD (b), NH4 (c) and NO3 (d) effluent concentrations  2 

 3 

Investigating the mean values (white lines) in Fig. 6(a), a gradually rising trend of effluent 4 

TSS can be observed. Since SRT was controlled by manipulating the WAS flow rate, 5 

increasing the SRT causes a higher MLSS in the aeration units, hence higher TSS 6 

concentration in the effluent. The mean values of effluent COD concentration presented in 7 

Fig. 6 (b), show a slightly dropping COD by increasing SRT from 10 to 15 days (due to 8 

oxidation and biodegradation of available biodegradable COD under the presence of 9 

enough DO) and by net growth of microorganisms (as a result of increasing SRT and halting 10 

biomass washout, which occurs in SRT of 10 days). 11 

However, increasing SRT from 15 to 40 days raises the amount of biomass present in the system 12 

(though with lower growth rates) while the amount of available soluble substrate reaches its 13 

minimum plateau stage. The upward trend of COD after SRT of 15 days can be attributed mainly 14 

to the loss of active biomass and/or cell debris as particulate biodegradable and/or inert COD, 15 

which occurs due to higher MLSS and SRT. In addition, it should be noted that increasing the SRT 16 

produces a decline in the system’s substrate concentration and lower substrate utilization rate. 17 
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Studying the variation of average effluent NH4 and NO3 concentrations in Fig. 6(c) and (d), three 1 

phases can be identified. In the first phase, the sharp decline of NH4 and steep rise of NO3 2 

concentration are observed by increasing the SRT value from 10 to 15 days. Due to the high flow 3 

WAS rate under SRT of 10 days, nitrifier microorganisms are washed out at a faster rate than they 4 

regenerate; as a result, incomplete or no nitrification occurs. Consequently, the mean effluent NO3 5 

obtained in SRT=10 days is in high agreement with measured values during the sampling 6 

campaign. Further prolonging SRT from 15 to 20 days, nitrification is initiated through which 7 

ammonia is consumed, and nitrate is produced. Since the contrast between these two operational 8 

conditions is significant, steep slopes are obtained in this phase. Consequently, SRT =15 days is 9 

detected as the minimum operational condition for nitrification in the system. 10 

In the second phase, a moderate decline of NH4 and an increasing slope of NO3 can be observed 11 

moving from SRT of 15 to 25 days. Due to increasing the residence time from the minimum SRT 12 

value for nitrification, nitrogen species are oxidized by nitrifying bacteria remaining in the aeration 13 

system for the period equal or slightly more than their regeneration time. As a result, ammonia 14 

oxidization occurs with an almost dropping rate (substrate utilization rate decreases with 15 

increasing of SRT).  16 

In the third phase, a mild declining slope of NH4 and a mild increasing slope of NO3 concentrations 17 

from SRT= 25 to 40 days can be identified. The slightly declining trend of effluent nitrogen species 18 

can occur due to the increased residence time from 25 days, which provides nitrifying bacteria a 19 

higher residence time than their regeneration time. However, soluble substrates will reach their 20 

minimum plateau and be depleted with increasing the SRT. As a result, biomass concentration 21 

may gradually decrease in this phase due to microorganism decay.  22 

Finally, cumulative moving average net effluent quality index (EQIn-m), total energy consumption 23 

(Ec), and daily averaged energy production from waste activated sludge (Epw) were obtained from 24 

the results of the simulations under each SRT scenario. For the simulation period, a cumulative EPw 25 

was calculated and reduced from ECt to obtain total net energy consumption (ECn). Fig. 7 26 

demonstrates a comparison of SRT scenarios in terms of cumulative effluent quality and energy 27 

consumption in the simulation period.  28 
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 1 

Fig. 7 Energy-based and effluent quality parameters in PAC obtained under various SRT scenarios  2 

Fig. 7 highlights that the minimum EQIn-m was obtained from the model simulation under SRT of 3 

25 days, whereas the minimum Ec-n was observed in the model with SRT of 10 days because of its 4 

high biogas production and low aeration energy. Considering the minimum obtained EQIn-m under 5 

the SRT of 25 days and lower Ec-n compared to other scenarios, the setup was selected as a non-6 

dominated operational scenario. Based on the sampling results and audited energy data, the 7 

Castiglione Torinese WWTP consumes 0.3 kWh for treating 1 m3 of the influent wastewater in its 8 

current operation. The energy consumption of WWTPs is highly influenced by operational and 9 

environmental characteristics, such as pollutant loads, plant size, and age, as well as the type of 10 

WWTP (Venkatesh and Brattebø, 2011). Average energy consumption rates of WWTPs in 11 

Germany, United Kingdom, and the United States were reported as 0.67, 0.64, and 0.45 kWh/m3, 12 

respectively, while ranges for Italian WWTPs were reported between 0.40 to 0.70 kWh/m3 13 

(Cantwell, 2015; Guerrini et al., 2017). Applying the proposed operational modification in 14 

Castiglione Torinese, energy consumption could be reduced to almost 0.28 kWh/m3. This 15 

operational change could result in 5000 MWh savings of annual energy consumption, which is 16 

approximately equivalent to the annual residential electricity consumption of 1000 people in Italy 17 

(Eurostat, 2013). 18 

4. Conclusion  19 

With the EU setting an ambitious energy efficiency target of 20% by 2020, energy monitoring and 20 

saving became a crucial task for managing wastewater treatment plants (WWTP). In response to 21 

this pressing requirement, this study proposed a robust methodology to develop and link energy 22 

consumption sub-models to wastewater treatment process model, with the use of limited energy 23 

audit data.  The methodology proposed within this study was implemented for the case of the 24 

largest Italian WWTP. Several sub-models including biokinetic, aeration, hydraulic and transport, 25 
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clarifier, influent, and effluent in addition to energy consumption sub-models (aeration, pumping, 1 

and mixing), were developed and calibrated. A scenario-based optimization approach was carried 2 

out to adjust the critical operational parameter and optimize the performance of the WWTP. 3 

Effluent quality-based and energy-based performance assessment criteria (PAC) were considered 4 

to investigate the results of the simulations. The main trade-off between energy consumption and 5 

nutrient discharges could be optimally identified in the scenario with a solids retention time (SRT) 6 

equal to 25 days. The results demonstrate the promising potential of significant reductions in 7 

energy consumption of up to 5000 MWh, by improving effluent quality (8-10% reduction of the 8 

effluent quality index) through operational changes only. An inherent advantage of the 9 

methodology described in this paper is the capability of analyzing “what-if” scenarios, including 10 

performance optimization under extreme climatic events.   11 

 12 

5. Future directions 13 

This study can be further continued by investigating other plant operational modes (e.g., high load 14 

conditions due to the discharge of reject water from sludge units and wet-weather events) to 15 

propose more practical optimization scenarios for the plant operators. Furthermore, in response to 16 

legislative targets in the 2020 Climate and Energy Package, indicating a 20 % reduction in EU 17 

greenhouse gas (GHG) emissions, the application of new performance assessment criteria related 18 

to anthropogenic GHG emissions can be considered. To this end, a more comprehensive modeling 19 

library, containing sub-models mimicking emission of carbon dioxide (CO2), methane (CH4), and 20 

nitrous oxide (N2O) gases in various wastewater and sludge treatment processes, can be used.   21 

 22 
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