The last decades witnessed an increasing number of works aiming at proposing objective measures for media quality assessment, i.e. determining an estimation of the mean opinion score (MOS) of human observers. In this contribution, we investigate a possibility of modeling and predicting single observer’s opinion scores rather than the MOS. More precisely, we attempt to approximate the choice of one single observer by designing a neural network (NN) that is expected to mimic that observer behavior in terms of visual quality perception. Once such NNs (one for each observer) are trained they can be looked at as ”virtual observers” as they take as an input information about a sequence and they output the score that the related observer would have given after watching that sequence. This new approach allows to automatically get different opinions regarding the perceived visual quality of a sequence whose quality is under investigation and thus estimate not only the MOS but also a number of other statistical indexes such as, for instance, the standard deviation of the opinions. Large numerical experiments are performed to provide further insight into a suitability of the approach.

Predicting Single Observer’s Votes from Objective Measures using Neural Networks / FOTIO TIOTSOP, Lohic; Mizdos, Tomas; Uhrina, Miroslav; Pocta, Peter; Barkowsky, Marcus; Masala, Enrico. - STAMPA. - (2020). ((Intervento presentato al convegno Human Vision and Electronic Imaging (HVEI) 2020 tenutosi a Burlingame, CA, USA nel Jan 2020 [10.2352/ISSN.2470-1173.2020.11.HVEI-130].

Predicting Single Observer’s Votes from Objective Measures using Neural Networks

Lohic Fotio Tiotsop;Enrico Masala
2020

Abstract

The last decades witnessed an increasing number of works aiming at proposing objective measures for media quality assessment, i.e. determining an estimation of the mean opinion score (MOS) of human observers. In this contribution, we investigate a possibility of modeling and predicting single observer’s opinion scores rather than the MOS. More precisely, we attempt to approximate the choice of one single observer by designing a neural network (NN) that is expected to mimic that observer behavior in terms of visual quality perception. Once such NNs (one for each observer) are trained they can be looked at as ”virtual observers” as they take as an input information about a sequence and they output the score that the related observer would have given after watching that sequence. This new approach allows to automatically get different opinions regarding the perceived visual quality of a sequence whose quality is under investigation and thus estimate not only the MOS but also a number of other statistical indexes such as, for instance, the standard deviation of the opinions. Large numerical experiments are performed to provide further insight into a suitability of the approach.
File in questo prodotto:
File Dimensione Formato  
hvei-3292254_1583780759475.pdf

accesso aperto

Descrizione: Versione editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2840343