Nowadays, some alternative methods exist for the replacement of physical vanes (or probes) for aerodynamic angles (angle of attack and sideslip) with synthetic solutions. The results are promising and there is a growing interest for the industry in this particular solution. However, a lack of methods has been observed to estimate their performance and to compare them. The MIDAS project, funded in the Clean Sky 2 frame, will provide the aerospace community with an innovative modular digital air data system (ADS) based on synthetic sensors for aerodynamic angles. To meet the system requirement specifications given by the project leader, a method of uncertainty estimation must be implemented. This paper proposes a method of estimation of the overall uncertainty based on a consolidated metrological procedure. This method holds a certain degree of generality because it can be applied to different kinds of architecture of the synthetic sensor. In this paper, it has been applied to the preliminary design of the synthetic sensor of the MIDAS air data system and the results have been reported as example.
Sensitivity Analysis of a Certifiable Synthetic Sensor for Aerodynamic Angle Estimation / Brandl, Alberto; Coppa, Graziano; Gili, Piero. - ELETTRONICO. - (2020), pp. 203-208. ((Intervento presentato al convegno 2020 IEEE International Workshop on Metrology tenutosi a Pisa (ITALY) nel 22-24 June, 2020.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Sensitivity Analysis of a Certifiable Synthetic Sensor for Aerodynamic Angle Estimation |
Autori: | |
Data di pubblicazione: | 2020 |
Abstract: | Nowadays, some alternative methods exist for the replacement of physical vanes (or probes) for ae...rodynamic angles (angle of attack and sideslip) with synthetic solutions. The results are promising and there is a growing interest for the industry in this particular solution. However, a lack of methods has been observed to estimate their performance and to compare them. The MIDAS project, funded in the Clean Sky 2 frame, will provide the aerospace community with an innovative modular digital air data system (ADS) based on synthetic sensors for aerodynamic angles. To meet the system requirement specifications given by the project leader, a method of uncertainty estimation must be implemented. This paper proposes a method of estimation of the overall uncertainty based on a consolidated metrological procedure. This method holds a certain degree of generality because it can be applied to different kinds of architecture of the synthetic sensor. In this paper, it has been applied to the preliminary design of the synthetic sensor of the MIDAS air data system and the results have been reported as example. |
ISBN: | 978-1-7281-6635-3 |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
PID6475891.pdf | Articolo principale | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
09160045.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2838285