We describe the design and fabrication of biochips based on one dimensional photonic crystals supporting Bloch surface waves for label-free optical biosensing. The planar stacks of the biochips are composed of silica, tantala and titania that were deposited using plasma ion assisted evaporation under high vacuum conditions. The biochip surfaces were functionalized by silanization and appropriate fluidic cells were designed to operate in an automated platform. An angularly resolved optical sensing apparatus was assembled to carry out the sensing studies. The angular operation is obtained by a focused laser beam at a fixed wavelength and detection of the angular reflectance spectrum by means of an array detector. Practical application of the sensor was demonstrated by detecting a specific glycoprotein, Angiopoietin 2, that is involved in angiogenesis and inflammation processes. The protocol used for the label-free detection of Angiopoietin 2 is described and the results of an exemplary assay are given, confirming that an efficient detection can be achieved.

Label-free detection of angiogenesis biomarkers using Bloch surface waves on one dimensional photonic crystals / Sinibaldi, A.; Anopchenko, A.; Occhicone, A.; Michelotti, F.; Danz, N.; Munzert, P.; Schmieder, S.; Sonntag, F.; Chandrawati, R.; Rana, S.; Stevens, M. M.; Napione, L.. - ELETTRONICO. - (2018), pp. 57-60. (Intervento presentato al convegno 1st Workshop on Nanotechnology in Instrumentation and Measurement, NANOFIM 2015 tenutosi a ita nel 2015) [10.1109/NANOFIM.2015.8425342].

Label-free detection of angiogenesis biomarkers using Bloch surface waves on one dimensional photonic crystals

Napione L.
2018

Abstract

We describe the design and fabrication of biochips based on one dimensional photonic crystals supporting Bloch surface waves for label-free optical biosensing. The planar stacks of the biochips are composed of silica, tantala and titania that were deposited using plasma ion assisted evaporation under high vacuum conditions. The biochip surfaces were functionalized by silanization and appropriate fluidic cells were designed to operate in an automated platform. An angularly resolved optical sensing apparatus was assembled to carry out the sensing studies. The angular operation is obtained by a focused laser beam at a fixed wavelength and detection of the angular reflectance spectrum by means of an array detector. Practical application of the sensor was demonstrated by detecting a specific glycoprotein, Angiopoietin 2, that is involved in angiogenesis and inflammation processes. The protocol used for the label-free detection of Angiopoietin 2 is described and the results of an exemplary assay are given, confirming that an efficient detection can be achieved.
2018
978-1-5090-5151-9
File in questo prodotto:
File Dimensione Formato  
8425342.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 5.27 MB
Formato Adobe PDF
5.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2836359