The design of countermeasures such as barriers and filter dams needs an accurate estimation of the impact load. However, debris flows typically contain poorly sorted grains, whose size can span several orders of magnitude. Large grains can induce impulsive loads on a barrier, and potentially clog the openings designed to induce self-cleaning after an event. The current modeling techniques, mostly based on continuum-based depth-integrated approximations, cannot accurately describe these mechanisms, and analytical approaches often fail to tackle this complexity. In an effort to reproduce a realistic impact load, a sample flow composed of grains is reproduced with a three-dimensional model based on the Discrete Element Method (DEM). The mass impinges upon a barrier with a prescribed velocity. The barrier design is inspired by a monitored dam built on a catchment located in the Italian Alps, which features multiple outlets. The grains can clog the outlets, forming frictional arches. The load pattern on the barrier is analyzed in terms of single-grain impact and of collective behaviors. The impulse transferred by the granular mass to the structure is then used as input for a structural analysis of the barrier through a Finite Element analysis. The results highlight how frictional chains can induce loads that are substantially different from those determined by standard analytical approaches.
Impact load estimation on retention structures with the discrete element method / Leonardi, Alessandro; Calcagno, Ezio; Pirulli, Marina. - STAMPA. - (2019). (Intervento presentato al convegno 7th International Conference on Debris-Flow Hazards Mitigation tenutosi a Golden, Colorado (USA) nel June 10-13, 2019) [10.25676/11124/173199].
Impact load estimation on retention structures with the discrete element method
Alessandro Leonardi;Marina Pirulli
2019
Abstract
The design of countermeasures such as barriers and filter dams needs an accurate estimation of the impact load. However, debris flows typically contain poorly sorted grains, whose size can span several orders of magnitude. Large grains can induce impulsive loads on a barrier, and potentially clog the openings designed to induce self-cleaning after an event. The current modeling techniques, mostly based on continuum-based depth-integrated approximations, cannot accurately describe these mechanisms, and analytical approaches often fail to tackle this complexity. In an effort to reproduce a realistic impact load, a sample flow composed of grains is reproduced with a three-dimensional model based on the Discrete Element Method (DEM). The mass impinges upon a barrier with a prescribed velocity. The barrier design is inspired by a monitored dam built on a catchment located in the Italian Alps, which features multiple outlets. The grains can clog the outlets, forming frictional arches. The load pattern on the barrier is analyzed in terms of single-grain impact and of collective behaviors. The impulse transferred by the granular mass to the structure is then used as input for a structural analysis of the barrier through a Finite Element analysis. The results highlight how frictional chains can induce loads that are substantially different from those determined by standard analytical approaches.File | Dimensione | Formato | |
---|---|---|---|
Leonardi, Calcagno, Pirulli - 2019 - Impact load estimation on retention structures with the discrete element method.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2836113